Самые красивые числа
Самое большое простое числоСамого большого простого числа не существует. Достаточно интригующе? Представьте, что вы любите мороженое. Родители приносят вам советский пломбир и говорят: «Это самое вкусное мороженое в мире». Вы становитесь взрослее и пробуете новые вкусы, и тот пломбир больше не кажется вам самым лучшим, находятся новые пристрастия – клубничное, шоколадное, с карамельной капелькой в нижней части рожка… В поиске идеального мороженого самое главное – не прекращать искать. Ряд больших простых чисел, судя по тому, что науке известно сейчас, можно продолжать бесконечно, а значит, мир будет бесконечно искать самое большое простое число.
Вообще, какое число называют простым? Целое положительное, имеющее только два натуральных делителя – единицу и само себя. То есть число 6, например, которое делится на 1, 2, 3 и 6, простым числом не является, оно относится к разряду составных. Всем нужным характеристикам соответствуют цифры 5 или 3.
Простые числа используются в математике, в информационных технологиях и в криптографии. Криптографическая система с открытым ключом основана на использовании больших простых чисел. Представьте, что два шпиона не договариваются о шифре и дешифровщике, чтобы не поставить под угрозу операцию.
Они поступают умнее. Тот, кто отправляет шифр, выбирает два числа, рассчитывает их произведение и сообщает его напрямую. Второй шпион шифрует свою информацию при помощи произведения и отправляет ее напарнику. Тот, кто их переписку перехватит, не сможет определить начальные числа, они известны только первому шпиону. Компьютер, для которого любезно напишут алгоритм, с задачей может справиться, но что если мы сделаем цифры настолько масштабными, что само их написание у компьютера займет много дней? Разумеется, данные шпионов будут вне опасности, а для дешифровки задействуют суперкомпьютер. Грубо говоря, единственное, что стоит между хакером и номером вашей кредитки, – это сложность числа.Поиском подобных чисел занимается программа Great Internet Mersenne Prime Search. Это крупный вычислительный проект, в котором программное обеспечение запускают добровольцы. Самый подходящий аналог в данном случае – проект SETI, занимающийся поисками признаков внеземной жизни. Найти самое большое простое число – примерно то же самое, что найти инопланетянина.
Математики буквально охотятся за простыми числами Мерсенна. Эта погоня не слишком отличается от поисков самого большого простого числа, но в случае с числами Мерсенна она уточнена формулой Mn = 2n – 1, где n – другое простое число. Подставим конкретные числа и получим М2 = 2 2 – 1 = 3. Эта формула – лакмусовая бумажка для простых и составных чисел. Если n – составное, то и M будет составным. И M будет простым, только если n – простое. Самое большое простое число M82589933 вычисляется путем умножения 82 589 933 двоек, а затем вычитания одного. Это 51-е известное число Мерсенна.
Простые числа Мерсенна назвали в честь французского монаха Марена Мерсенна, который изучал их в XVII веке и посвятил жизнь поиску уникальных и интересных чисел. Такие забавы всегда захватывали математиков и захватывают до сих пор. В 1648 году Мерсенн выпустил трактат Cogitata Physica-Mathematica, в котором с помощью своей формулы Мр = 2p – 1 вывел, что двойка в степенях 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 даст в конце простое число, а все остальные будут составными. В XVII веке никто не потребовал от него весомых доказательств, и теорема быстро стала популярной. Оказалось, что требованиям простоты в уравнении Мерсенна отвечают далеко не все цифры. Математики начали искать подходящие.
Марен Мерсенн
Great Internet Mersenne Prime Search, о котором сказано выше, был создан в январе 1996 года математиком Джорджем Вольтманом (George Woltman) для открытия новых простых чисел Мерсенна. Большинство членов GIMPS присоединились к поиску не ради развития криптографии или математики, а чтобы почувствовать сопричастность к рекордам. Программист Патрик Ларош, обнаруживший самое большое на данный момент простое число, использовал программное обеспечение GIMPS, чтобы бесплатно протестировать мощность компьютеров, сборкой которых он увлекается.
Через четыре месяца и всего с четвертой попытки он обнаружил самое большое простое число. Для сравнения, некоторые ищут уже 20 лет и предприняли тысячи попыток. Доказательство простоты числа Лароша заняло 12 дней безостановочных вычислений на машине с процессором Intel i5-4590T. Чтобы доказать отсутствие ошибок в основном процессе обнаружения, новое простое число было независимо проверено с использованием трех разных программ на трех разных аппаратных конфигурациях. Возможно, пока вы читаете эту статью, компьютер в другой части света находит новое число Мерсенна, а может – и самое большое простое число тоже.Количество атомов во Вселенной оценивается в число не больше чем с сотней знаков.
Число Шелдона КупераВ 73-й серии ситкома «Теория Большого взрыва» физик-теоретик Шелдон Купер рассказывает друзьям о необычных свойствах числа 73. Во-первых, 73 – 21-е простое число. Его зеркальное отражение 37 является 12-м простым числом, а его отражение 21 – это результат умножения 7 и 3.
Шелдон и самое замечательное число 73. The Big Bang Theory / CBS
Убежденность Шелдона в уникальных свойствах числа 73 оставалась просто выдумкой создателей сериала, пока математики Крис Спайсер (Chris Spicer) из Морнингсайд колледжа и Карл Померанс (Carl Pomerance) из Университета Джорджии не решили проверить его характеристики. Они доказали, что 73 – единственное число, обладающее свойствами зеркальности (mirror) и произведения (product). Простое число они обозначили как p(n), а его зеркало – как m(x). Эти обозначения нужны не для того, чтобы всех запутать, а чтобы выводить формулы и подставлять в них числа, потому что Спайсер и Померанс воспользовались методом от противного. Математики не могли навскидку прикинуть контрпримеры: если аналоги числа Шелдона и существуют, лежат они далеко за пределами вычислений, которые можно сделать вручную.
В первую очередь ученые доказали, что число Шелдона не превосходит 1045, а вслед за этим утверждением вывели еще парочку ограничений. Например, пришли к тому, что простое число n будет 7-гладким числом, то есть его простые делители не больше 7; первая цифра числа p(m(n)) совпадут с числом цифр p(n); n не будет делиться на 625; если p(n) будет больше 1019, то n не удастся разделить на 125; и, наконец, что n не делится на 100. Десятичная запись числа p(n), как выяснили исследователи, не будет содержать нуля, а единица может стоять только в самом его начале; первая цифра p(m(n)) .
В теории чисел гладким называют целое число, все простые делители которого малы. Поскольку условие «делители малы» можно понимать по-разному, чаще всего гладким числом называют такое, чьи простые делители не превосходят 10 (то есть, по сути, равны 2, 3, 5 или 7).
Ученые проверили все эти свойства для возможных кандидатов в диапазоне между 1019 и 1045. Среди простых чисел они обнаружили примерно 1865251, имеющее 7-гладкий номер. Исключив все, делителем к которым может быть 100 или 125, Спайсер и Померанс оставили только 213449 вариантов. Из них начинались на 1, 3, 7 и 9 лишь 112344 кандидата. Всего лишь сто тысяч числовых значений! Делов-то – еще на пару проверок. После всех фильтраций у математиков осталась фантастическая пятерка претендентов – 97496326163, 97841660857, 99024780191, 316109730941 и 785009387557. Первому числу в десятичной системе не хватало единицы на начальной позиции, а все остальные содержали ноль.
Профессор математики Карл Померанс объясняет, почему число 73 – самое уникальное среди простых чисел Фото: Eli Burakian www.phys.org
Доказательством от противного – как в школе, но только с формулами, явно превосходящими по сложности школьный уровень, – Спайсер и Померанс вычислили, что 78 – это единственное число со свойствами, обозначенными Шелдоном Купером. Они назвали его «числом Шелдона Купера» и успокоились. Практического значения эта находка не имеет. Но, вопреки распространенному мнению о рационализме ученых математического профиля, очень многие вещи они делают просто потому, что это красиво. Число Шелдона Купера – красивое.
Число ПиПонять, что такое число Пи, довольно легко – примерно как посчитать до одного, двух, 3,1415926535… Математик Уильям Шааф (William L. Schaaf) в книге «Природа и история числа Пи» говорит, что ни один символ в математике не вызывал столько загадок, романтизма, заблуждений и интереса, как число Пи. π – это 16-я буква греческого алфавита, и она используется для представления наиболее широко известной математической константы. По определению число Пи – это отношение длины окружности к ее диаметру. Иными словами, если разделить окружность (
Уже в Древнем Египте площадь круга вычисляли по формуле, дающей приблизительное значение 3,1605. Существует также библейский стих, в котором, кажется, речь идет о числе Пи: Хирам сделал Море – литое, круглое; в десять локтей от края до края; высота его – пять локтей; окружность, если померить шнурком, – тридцать локтей (Царств 7:23, современный перевод RBO-2015).
Пи – иррациональное число, а это значит, что для него не подойдет простая дробь. Математики называют Пи «бесконечным десятичным числом» – после запятой (или десятичной точки) цифры продолжаются вечно. Одним из первых расчет Пи выполнил Архимед Сиракузский. Математик аппроксимировал площадь круга на основе площади правильного многоугольника, вписанного в круг, и площади многоугольника, внутри которого была помещена окружность. У Архимеда получилась верхняя и нижняя граница для площади круга, и он нашел приблизительное значение для числа Пи – между 3 1/7 и 3 10/71. Хотя точного значения числа Пи нет до сих пор, профессиональные математики и любители пытаются вычислить его до максимально возможного числа. Рекорд 2019 года принадлежит сотруднице компании Google, вычислившей с помощью написанного алгоритма число с точностью до 31,4 трлн знаков после запятой.
Международный день числа Пи отмечается 14 марта в 1:59:26. Эту дату предложил физик Ларри Шоу (Larry Shaw). Он заметил, что именно 14 марта – если записывать в американской системе месяц/день – в 1:59:26 цифровой ряд совпадает с числом π = 3,1415926… Европейцы, пользующиеся 12-часовой системой, отмечают праздник днем, в России настаивают на его «ночном» формате. В этот день любители числа Пи со всего мира традиционно соревнуются в его повторении. Запомнить такого гиганта сложно. Мировой рекорд Гиннесса по чтению большинства цифр числа Пи принадлежит Раджвиру Минау из Индии. В 2015 году он с завязанными глазами прочел число Пи с точностью до 70 тыс. знаков после запятой! Попробуйте запомнить тоже. Первые сто цифр числа Пи: 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 7067… На сайте piday.org число Пи указано в первом миллионе цифр.
Физик Ларри Шоу. www.pi314.net
Число ЭйлераУ числа Эйлера тоже есть своя буква, как и у Пи, их вообще довольно часто сравнивают. e, число Эйлера – тоже константа, и равна она 2,7182818284590… е – основание натурального логарифма, уже одно это подсказывает, что, в отличие от Пи, число Эйлера используют не в геометрии, а в алгебре. Самым известным примером того, как работает число Эйлера, обычно служит мыслительный эксперимент швейцарского математика Якоба Бернулли о процентном доходе. Он обнаружил, что если процентный доход по вложенному в банк капиталу (1 единица) начисляется один раз в конце года, то итоговая сумма будет равна двум единицам. Но если те же проценты будут начислять два раза в год, то получать по итогу вы будете 2,25 рубля. А если каждый месяц, то ≈2,4414. Бернулли решил посчитать, что будет, если начисление процентов бесконечно увеличивать, и обнаружил, что у этого числа есть предел. И этот предел как раз равен ≈2,7182818. Но этот иррациональный показатель назвали не числом Бернулли, а числом Эйлера. Дело в том, что именно Леонард Эйлер ввел величину в обиход и рассчитал целых 23 знака после запятой. По тем временам нешуточное достижение, он-то делал все вручную, безо всяких суперкомпьютеров. е используют для того, чтобы считать интегралы и исследовать функции.
Чтобы запомнить длинный ряд e, используют забавное правило: «два, семерка и два раза Лев Толстой». Автор «Войны и мира» родился в 1828 году.
В честь самого большого простого числа называется российская группа СБПЧ. «Теория Большого взрыва» помогла доказать уникальность 73, а числа Мерсенна ищут энтузиасты по всему миру. Иногда не обязательно искать числа силы или высчитывать черты характера по дате рождения. Тайны и загадки могут скрываться в реальной математике, нужно лишь почаще к ней обращаться.
Красивые цифры для ников. Шрифты прикольных цифр для оформления имён.
Красивые цифры для ников. Шрифты прикольных цифр для оформления имён.Counter-Strike 1.6, CSS, CS:GO
мониторинг серверов, карты, спреи, скины
- Главная
- Красивые буквы
- Красивые цифры
Меню Counter-Strike
Игровые серверы CS
- Мониторинг серверов CS
- Хостинг серверов CS
- Серверы Counter Strike
Сервисы для игроков
- Красивые буквы
- Английские перевернутые
- Красивые цифры
- Русские перевернутые
- Крутые имена и ники
- Крутые шрифты
Скачать CS 1.6
Реклама
⓵
⓶
⓷
⓸
⓹
⓺
⓻
⓼
⓽
⓾
❶
❷
❸
❹
❺
❻
❼
❽
❾
❿
➀
➁
➂
➃
➄
➅
➆
➇
➈
➉
➊
➋
➌
➍
➎
➏
➐
➑
➒
➓
!
«
#
$
%
&
‘
(
)
*
+
,
—
.
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
1 2 3 > >|
Самые изощренные игроки уже давно используют цифры в своих никах. С помощью цифр можно составить некоторые буквы и даже слова. К примеру, цифра «4» уже воспринимается всеми, как буква «ч». Однако никто еще не использует красивые цифры, которые сделают ваш ник необычным и выделит его среди всех остальных, где присутствуют цифры. У нас вы найдете цифры в кружочках, цифры нестандартного шрифта и еще несколько разновидностей цифр для того, чтобы сделать ваш ник по-настоящему уникальным.
NEW | 0.009 / 20.11.22 / unknown. 1. 1. 1. 1
1Beautiful Numbers — Etsy.de
Etsy больше не поддерживает старые версии вашего веб-браузера, чтобы обеспечить безопасность пользовательских данных. Пожалуйста, обновите до последней версии.
Воспользуйтесь всеми преимуществами нашего сайта, включив JavaScript.
Найдите что-нибудь памятное, присоединяйтесь к сообществу, делающему добро.
(842 релевантных результата)