Как сделать солнечную батарею из панелей своими руками: сборка и монтажные инструкции
Углеводороды были и остаются основным источником энергии, однако все чаще человечество обращается к восполнимым и экологически безопасным ресурсам. Это стало причиной повышенного интереса к солнечным батареям и генераторам.
Однако многие не решаются на установку гелиосистемы из-за дороговизны обустройства комплекса. Удешевить продукцию можно, если взяться за ее создание самостоятельно. Сомневаетесь в собственных силах?
Мы расскажем вам, как сделать солнечную батарею своими руками, используя доступные комплектующие. В статье вы найдете всю необходимую информацию для того, чтобы выполнить расчет гелиосистемы, подобрать составляющие комплекса, осуществить сборку и установку фотопанели.
Содержание статьи:
Плюсы и минусы применения гелиосистем
По статистике, взрослый человек ежедневно использует около десятка различных приборов, работающих от сети. Хотя электричество считается относительно экологичным источником энергии, это иллюзия, ведь при его получении используются ресурсы, загрязняющие окружающую среду.
С этой точки зрения, гораздо выигрышнее.
Галерея изображений
Фото из
КПД кристаллических кремниевых фотомодулей достигает 15 – 20%, и есть все основания полагать, что в ближайшие годы этот показатель вырастет. Уже сейчас существуют образцы, КПД которых достигает 22-33.7%. Пока они тестируются в лабораторных условиях, но скоро появятся в продаже. При выборе фотомодулей стоит обратить внимание на продукцию компании Sanyo
В среднем КПД батарей этого типа составляет 10-18.7%. Все зависит от основы пленочных солнечных элементов. Некоторые модели потенциально небезопасны для окружающей среды, т.к. содержат кадмий, поэтому при покупке следует тщательно изучить техническую документацию. Утилизируют такие батареи строго в соответствии с рекомендациями производителя
Модули этого типа называют еще многопереходными или тандемными. Они имеют особую структуру ячеек, которые образовывают несколько p-n переходов. Это относительно новый продукт на рынке, хотя для космической отрасли используется довольно давно. КПД (соответственно, и цена) таких моделей зависит от количества слоев ячеек
Это элементы, изготовленные из наноструктурированных материалов. Их используют в отраслях, где малый вес солнечных модулей имеет принципиальное значение. Благодаря сверхтонкой структуре можно существенно увеличить эффективность работы таких батарей. Для рядового покупателя сверхтонкие модули пока недоступны
Кристаллические кремниевые фотомодули
Тонкопленочные солнечные батареи
Многослойные солнечные модули
Сверхтонкие многослойные солнечные модули
Комплектующие для сборки и генераторов давно есть в свободной продаже, и при желании собрать систему может любой желающий. Для этого потребуются некоторые финансовые вложения и время. Процесс сборки кропотлив, требует внимания и точности, зато сама работа не отличается особой трудоемкостью.
В силу климатических особенностей многих регионов не приходится рассчитывать, что солнечной энергии хватит для полного обеспечения частного дома. Она способна покрыть лишь 20-30% всех энергопотребностей. Зато это хорошее решение для дачи
Преимущества применения солнечной энергии:
- Огромный потенциал. Солнце способно дать достаточно энергии для удовлетворения всех человеческих потребностей. Она возобновляема и неисчерпаема, чем выгодно отличается от угля, нефтепродуктов, природного газа.
- Доступность. Солнце есть везде – и в жарких странах, и в самых холодных. Его вполне достаточно для всех нужд.
- Экологичность. Из-за тотального энергетического кризиса «зеленая» энергетика – самая перспективная сфера для научных исследований и высокотехнологичных разработок. Солнечные батареи прекрасно справляются со своей задачей без вреда для окружающей среды.
- Отсутствие шума. Гелиосистемы работают бесшумно, что выгодно отличает их от многих других источников энергии.
- Экономичность. Эксплуатация и обслуживание солнечных батарей не требуют никаких особых затрат. Вложив деньги один раз, владелец может использовать систему в течение 20-25 лет. Главное – своевременно чистить элементы.
- Широкая сфера применения. Солнечные батареи могут вырабатывать достаточно энергии для обеспечения дома электричеством и теплом. Однако это не единственная область их применения. Гелиосистемы используют для опреснения воды и даже для обеспечения энергией орбитальных станций.
Пока еще солнечные батареи дороги, хотя уже сейчас появляются способы существенно сэкономить при их самостоятельном изготовлении. Каждый год внедряются новые разработки, которые позволяют упростить и удешевить процесс получения солнечной энергии.
Гелиосистемы плохо подходят в качестве основного источника энергии, а вот в качестве дополнительного или альтернативного – отличный вариант. По сравнению с ветрогенераторами, они более стабильны и выгодны
Интересная разработка – . Благодаря эластичности, фотополотно значительно проще устанавливать – панель “подстраивается” под форму крыши или другой опоры.
Одна из современных технологий – тонкопленочные модули, которые внедряют в стройматериалы. Также появились прозрачные накопительные элементы, предназначенные для использования в оконных конструкциях.
Это разработка японской компании Sharp. Специалисты считают, что уже в ближайшее время такие солнечные батареи станут в разы мощнее и выгоднее.
С накоплением солнечной энергии нередко возникают проблемы, т.к. аккумуляторные батареи дороги. Единственное, что в какой-то мере компенсирует этот недостаток: большая часть мощных электроприборов включается в светлое время суток (+)
По объективным причинам гелиосистемы пока еще не могут полностью заменить углеводороды, т.к. получение и накопление солнечной энергии связано с большими расходами, однако они могут стать неплохим источником или отдельных электроприборов.
Некоторые владельцы решаются на оборудование своих домов солнечными станциями, полностью обеспечивающими потребности в электроэнергии. Такие вложения окупаются за 10-40 лет в зависимости от типа моделей – готовых или самодельных
Технологии быстро развиваются, а солнечные батареи можно модернизировать и наращивать, поэтому стоит начать собирать подходящие системы уже сейчас.
Подробный обзор видов солнечных батарей приведен в .
Какие комплектующие нужны и где их купить
Основная деталь – солнечная фотопанель. Обычно кремниевые пластины покупают через интернет с доставкой из Китая или США. Это связано с высокой ценой на комплектующие отечественного производства.
Себестоимость отечественных пластин получается настолько высокой, что выгоднее заказать на Еbay. Что касается брака, то на 100 пластин лишь 2-4 непригодны к использованию. Если заказывать китайские пластины, то риски выше, т.к. качество оставляет желать лучшего. Преимущество – только в цене.
Готовая панель гораздо удобнее в использовании, но и втрое дороже, поэтому лучше все-таки озадачиться поиском комплектующих и собрать устройство своими руками
Остальные комплектующие можно купить в любом магазине электротоваров. Также потребуются оловянный припой, рама, стекло, пленка, лента и карандаш для разметки.
Галерея изображений
Фото из
Выбор солнечного элемента для батареи – самый важный этап в покупке комплектующих. Батареи могут быть поли- и монокристаллическими. Преимущество первых – цена, а вторых – большая эффективность. Лучше выбрать монокристаллические кремниевые модули. Они идеально подходят для объектов ограниченной площади
Оптимальный вариант – выбрать аккумулятор AGM типа. Они относительно недороги, компактны, способны работать при любых температурах. При покупке следует ориентироваться на емкость прибора, длительность зарядки и срок службы, указанный производителем
Кроме солнечного элемента, стабилизатора и аккумулятора, потребуются также паяльник, олово и карандаш. Если изначально куплен готовый комплект с припаянными проводниками, работы будет гораздо меньше, а сама сборка системы существенно упрощается
Для сборки батареи потребуются стабилизатор напряжения и контроллер нагрузок. Если правильно собрать самодельную систему, ее можно будет подключить к обычному аккумулятору – свинцово-кислотному или же литиевому. Это позволит более рационально использовать энергию
Солнечные элементы для батареи
Аккумулятор для солнечной системы
Комплект для сборки батареи
Стабилизатор напряжения для солнечной батареи
При покупке комплектующих стоит обращать внимание на гарантию производителя. Обычно она составляет 10 лет, в некоторых случаях – до 20. Важно также правильно подобрать аккумулятор. Экономия на нем нередко оборачивается неприятностями: во время зарядки прибора может выделяться водород, что чревато взрывом.
Особенности расчета мощности систем
Перед тем как закупить комплектующие и сделать солнечную панель, рассчитывают необходимую мощность прибора и емкость аккумулятора.
Самый простой способ – воспользоваться онлайн-калькуляторами, размещенными на некоторых сайтах в интернете.
Количество энергии, заявленное в техническом паспорте изделия, рассчитано для идеальных условий. На них невозможно ориентироваться, ведь устройства работают по-разному в зависимости от времени года и суток. Потери энергии происходят постоянно, в т.ч. в аккумуляторах, инверторе (+)
Важнейший показатель, который придется учитывать, – среднемесячное количество потребляемой энергии. Его можно определить по счетчику.
Также следует сделать скидку на особенности работы самих солнечных батарей. Они способны выдавать предельную мощность лишь при условии чистого неба, причем угол падения солнечных лучей должен быть прямым.
Если погода пасмурная или угол падения лучей слишком острый, мощность батарей может упасть в 20 раз. Даже малейших облаков достаточно, чтобы вдвое снизить показатели. Поэтому при расчетах ориентируются на то, что 70% энергии будет вырабатываться с 9 до 16 часов, а в остальное время – до 30%.
Зимой от гелиосистем мало пользы: из-за пасмурной погоды они вырабатывают минимальное количество энергии. Зато ветрогенераторы работают на полную мощность и способны компенсировать эти потери. Комбинация двух таких устройств очень эффективна
В условиях, приближенных к идеальным, в «рабочее время» панели мощностью 1кВт вырабатывают 7 кВт/ч, а ранним утром и вечером – около 3 кВт/ч. Второй показатель лучше вообще не брать в расчет и оставить «про запас» с учетом возможной облачности и изменения угла падения лучей.
Получается, что следует ориентироваться на 210 кВт/ч в течение 1 календарного месяца. Это идеальный показатель, который требует корректировки.
На Еbay можно найти неплохой набор для изготовления солнечной батареи своими руками. Иногда это устройства, которые отбраковали на производстве (т.н. модули В-типа). Они дешевы, но вполне пригодны для сборки домашней системы, поскольку эксплуатационные характеристики близки к заявленным
Чтобы определиться с реальным количеством энергии, следует найти данные о том, сколько солнечных дней в году бывает в конкретном регионе. В эти периоды мощность батарей не будет составлять даже половины от паспортного показателя. Если устройства будут работать осенью и зимой, то нужно сделать поправку в 30-50% на пасмурную погоду.
Пошаговая инструкция по сборке солнечной панели
Работа по сборке начинается со схемы и проекта. Нужно четко представлять, как будет устроена и закреплена солнечная панель. Так, если КПД системы напрямую зависит от угла наклона относительно солнечных лучей, следует позаботиться, чтобы этот угол можно было менять.
Во многих готовых моделях предусмотрены механизмы, автоматически поворачивающие панели, а в самодельных придется продумать их самому.
Модули солнечной панели должны быть одинаковыми, ведь эквивалентность тока равна показателю наименьшего элемента. Также подбор одинаковых деталей значительно упростит процесс сборки всей системы в целом, т.к. не придется подгонять размеры каркасов и рассчитывать мощность каждой конструкции отдельно
Технология сборки зависит от общей площади панелей, их количества, особенностей дополнительных материалов. Обширная площадь системы гарантирует ее более высокую мощность, но одновременно увеличивается и вес конструкции, что тоже приходится учитывать, ведь кровля должна его выдерживать.
Этап 1: изготовление корпуса конструкции
Когда все комплектующие подготовлены, можно приступать к сборке корпуса, на котором будет держаться вся конструкция.
Понадобятся следующие материалы:
- листы фанеры, вырезанные по размеру панелей;
- плиты ДВП;
- деревянные рейки, из которых будут изготовлены бортики;
- материалы для крепежа: саморезы, уголки, подходящий клеевой состав;
- оргстекло;
- краска и пропитки, чтобы облагородить внешний вид готовой конструкции и защитить ее от гниения.
В первую очередь готовят основание – к фанере приклеивают невысокие бортики. Они не должны закрывать панели, поэтому стоит выбрать рейки около 2 см. Чтобы бортики не отклеились, их дополнительно закрепляют саморезами и уголками.
Верхнюю крышку изготавливают из оргстекла, а деревянные детали конструкции покрывают антисептическими пропитками для защиты от гниения и красят. Оттенок краски должен гармонировать с цветом крыши
Низ основания и бортики сверлят в нескольких местах, чтобы обеспечить вентиляцию. Крышку нельзя сверлить, т.к. элементы конструкции могут подмокнуть. Для крепления панелей лучше выбрать плиты ДВП, поскольку они не проводят ток. При желании ДВП можно заменить другим материалом.
Этап 2: установка и крепление элементов
Солнечные элементы следует равномерно разложить на подложке «изнаночной» стороной и припаять проводники. Для этого нужно будет разметить места пайки. Чтобы не испортить все модули, лучше сначала последовательно соединить только два элемента.
Если все в порядке, так же припаивают остальные модули. В результате на подложке должна появиться аккуратная цепочка соединенных элементов.
После сборки конструкции ее следует проверить на работоспособность. Если она функциональна, то ее можно уже крепить шурупами к каркасу. На готовую панель ставят блокировочный диод. Его задача – предотвратить разрядку аккумулятора
Когда все модули будут соединены, их можно перевернуть для закрепления на панели. В качестве клеевого состава можно использовать эпоксидную смолу или силиконовый герметик. Желательно не намазывать края модулей, чтобы конструкции не сломались в случае деформации каркаса. Достаточно прочно приклеить элементы по центру.
Этап 3: особенности крепления крышки
После сборки батареи на каркасе ее закрывают крышкой из оргстекла, еще раз проверяют и фиксируют. Важно, чтобы клеевой состав полностью просох до установки крышки, иначе он продолжит испаряться и оставит мутные следы на оргстекле.
На выходной кабель устанавливают двухконтактный разъем. Он нужен для подсоединения контроллера. Остается еще раз проверить работу системы и исправить недочеты, если они будут обнаружены.
Этап 4: установка готовой системы
Батареи устанавливают на земле, на стенах или крыше. Это зависит от пожеланий самого владельца здания. Главное, чтобы система была расположена с южной стороны здания и ее работе ничто не мешало.
Если конструкцию планируется крепить на скате кровли, нужно убедиться, что поверхность выдержит дополнительную нагрузку. Систему устанавливают так, чтобы она располагалась под углом 30-40° к крыше, и намертво закрепляют.
Солнечные панели, особенно тонкопленочные, подвержены деформациям под воздействием ветра или давлением снега. Нужно позаботиться о надежной ветрозащите и установить приспособления, задерживающие или рассекающие снег, который сползает с крыши
Отличное решение – крепление системы к металлической рамной конструкции из толстого профиля. Минимальное сечение – 25*25 мм, а при большой площади конструкции лучше выбрать более прочный профиль. Перед каждой такой рамой устанавливают снегозадержатель или оборудуют кронштейны снегорассекателями.
На нашем сайте есть блок статей, посвященных сборке, монтажу и подключению солнечных батарей, советуем ознакомиться:
Выводы и полезное видео по теме
Описаний бывает недостаточно, чтобы полностью разобраться в особенностях сборки и монтажа солнечных панелей. К тому же существуют различные способы крепления, а «народные умельцы» совершенствуют навыки и постоянно изобретают новые пути решения старых задач.
Мы предлагаем видеоинструкции и советы опытных мастеров, чтобы вам было проще понять процесс сборки гелиосистем. Выберите те рекомендации, которые лучше всего соответствуют вашим планам и пожеланиям.
Где купить комплектующие и как собрать систему, описано в видеоролике ниже:
Полное пошаговое описание процесса сборки:
Оригинальный подход к сборке солнечных батарей, советы специалиста:
Инструкция по сборке солнечной электростанции для дома:
Альтернативная энергетика – это действительно актуально. Если вы решили разобраться в способах получения энергии без углеводородов, можете гордиться тем, что заботитесь не только о себе, но и о планете в целом.
Простая солнечная батарея поможет вам обеспечить себя «зеленым» электричеством и сбережет наш общий дом. Собрать систему несложно, главное – захотеть и сделать.
Имеете опыт в изготовлении солнечной батареи? Пожалуйста, поделитесь информацией с нашими читателями, предложите свой метод сборки гелиосистемы. Оставлять комментарии и добавлять фотографии самоделок можно в форме, расположенной ниже.
sovet-ingenera.com
Рассчитываем и изготавливаем солнечные батареи своими руками
Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.
Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.
Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:
- Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
- Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
- Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.
Солнечная батарея — что это такое
Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.
Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.
Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.
Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.
В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.
Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.
Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно здесь.
Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.
Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.
Преимущества и недостатки этого вида энергии
Основные недостатки солнечных батарей:
- Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
- Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
- Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
- В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
- Большая площадь, требующаяся для конструкции достаточной мощности.
- Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
- Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.
Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.
Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.
Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:
- Отсутствие механических преобразований энергии и движущихся частей.
- Минимальные расходы на эксплуатацию.
- Долговечность 30~50 лет.
- Тишина при работе, отсутствие вредных выбросов. Экологичность.
- Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
- Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
- Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.
Конструктивные особенности
В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.
Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.
Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.
Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.
То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.
Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.
При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.
Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.
Подбор материалов для создания панели
В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.
Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.
Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:
- Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
- Ток: КЗ — 1,5 А, рабочий — 1,2 А.
- Рабочая мощность — 0,62 Вт.
- Габариты — 52х77 мм.
- Цена 29 р.
Изготовление солнечной батареи для дома своими руками
Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.
Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.Рассчитываем комплектующие
Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.
Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.
Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.
Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.
Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.
Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.
Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:
- Длина — 15 x 52 = 780 мм.
- Ширина — 77 x 6 = 462 мм.
Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.
Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.Также нам потребуются:
- Паяльник электрический 40 Вт.
- Припой, канифоль.
- Монтажный провод.
- Силиконовый герметик.
- Двусторонний скотч.
Этапы изготовления
Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.
Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, какой выбрать УЗО для квартиры и дома.При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать тут.
Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:
- Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
- Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
- Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
- Склеиваем окончательно пластины с задней стороны скотчем.
- Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
- Вставляем в раму заднюю стенку и герметизируем её.
При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.
Схема подключения электроснабжения дома с использованием наших батарей
Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.
Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.
Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м2 = 20 м2.
Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.
Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.
Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.
Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.Делаем выводы
При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.
Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.
В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.
Видео о том, как изготовить прибор для сбора солнечной энергии самому
elektrik24.net
Как сделать солнечную батарею своими руками
Солнечная батарея в готовом для функционирования виде стоит недешево. Но ее можно соорудить своими руками. Подобные технологические новшества — отнюдь не редкость в нашем веке. Подобные устройства многим помогают в быту и жизни.
Так солнечные батареи на крыше дома делают электрическую энергию практически бесплатной. Отопление оранжерей, обеспечение работы отдельных бытовых приборов, обогрев и другие функции — сфера применения подобных конструкций.
С каждым годом они приобретают все большую популярность. Рассмотрим метод сборки электростанции своими силами.
Краткое содержимое статьи:
О солнечных батареях
Разобравшись, как сделать солнечные батареи своими руками, возможно малыми затратами соорудить собственную конструкцию. Она будет работать аналогично тем, производятся промышленностью. Это генератор, функционирующий за счет фотоэлектрического эффекта.
Гелеоэнергия преобразуется в электричество вследствие падения лучей на пластины, представляющие собой фотоэлементы — главные части конструкции.
Для примера, собранная система состоит из 36 пластин. Характеристики солнечных батарей для дома будут следующие: каждый элемент имеет размеры 8 на 15 см и выдает 2,1 Вт. Суммарная мощность устройства получится равной 76 Вт.
electrikexpert.ru
Как сделать солнечную батарею своими руками
Все больше людей стремится к приобретению домов, находящихся в отдалении от очагов цивилизации. Причин этому существует множество, главная из которых, наверное, экологическая. Ни для кого не секрет, что интенсивное развитие промышленности пагубно сказывается на состоянии окружающей среды. Но при покупке такого дома можно столкнуться с отсутствием электроснабжения, без которого жизнь в двадцать первом веке едва ли можно себе представить.
Проблему обеспечения энергией здания, находящегося далеко от очагов цивилизации можно попробовать решить установкой ветрогенератора. Однако этот способ далеко не идеален. Для того, чтобы электроэнергии хватило на весь дом потребуется установка большого ветряка или нескольких, но и в этом случае энергообеспечение будет носить эпизодический характер, отсутствуя в безветренную погоду.
Для обеспечения стабильности энергообеспечения дома, эффективным решением является совместное использование ветрогенератора и солнечной батареи, но, к сожалению, батареи далеко не дешевы. Решением этих сложностей было бы производство солнечной батареи своими руками, способной на равных конкурировать с заводскими по мощности, но в то же время приятно отличаться от них ценой. И такое решение есть!
Для начала, необходимо определиться, что же представляет собой солнечная батарея. По своей сути, это контейнер, содержащий в себе массив, преобразующих солнечную энергию в электрическую, элементов. Слово «массив» применимо в данном случае, потому что для генерации достаточных объемов энергии, необходимых в условиях энергообеспечения жилого дома, солнечных элементов потребуется довольно внушительное количество. В виду высокой хрупкости элементов, их в обязательном порядке объединяют в батарею, которая обеспечивает им защиту от механических повреждений и объединяет вырабатываемую энергию. Как видно, в принципиальном устройстве солнечной батареи нет ничего по-настоящему сложного, поэтому ее вполне можно сделать своими руками.
Перед тем, как приступать непосредственно к действиям, принято проводить глубокую теоретическую подготовку, чтобы избежать лишних трудностей и издержек в процессе. Именно на этом этапе многие энтузиасты сталкиваются с первым препятствием – практически полным отсутствием полезной с практической точки зрения информации. Именно это явление создает надуманную видимость сложности солнечных батарей: раз их никто не делает сам, значит это сложно. Однако, задействовав логическое мышление можно придти к следующим выводам:
- основа целесообразности всего процесса заключается в приобретении солнечных элементов по доступной цене
- покупка новых элементов исключена, ввиду их высокой стоимости и сложности покупки в необходимом количестве.
- солнечные элементы, обладающие дефектами и повреждениями, могут быть приобретены на аукционе eBay и в других источниках, по значительно более низким ценам, чем новые.
- дефектные элементы вполне могут быть использованы в заданных условиях.
На основе сделанных выводов, становится ясно, что следующим шагом в изготовлении солнечной батареи будет покупка дефектных солнечных элементов. В нашем случае элементы были куплены на eBay.
Приобретенные монокристаллические солнечные элементы имели размер 3х6 дюйма, и каждый их них выдавал порядка 0.5В энергии. Таким образом, соединенные последовательно 36 таких элементов, в общей сложности выдают около 18В, которых достаточно для эффективной подзарядки 12В аккумулятора. Следует помнить, что такие солнечные элементы хрупкие и ломкие, поэтому вероятность их повреждения при неосторожном обращении крайне высока.
Для обеспечения защиты от механических повреждений продавец покрыл воском наборы из восемнадцати штук. С одной стороны это эффективная мера, позволяющая избежать повреждений во время транспортировки, с другой стороны – лишние проблемы, так как удаление воска вряд ли кому-то покажется приятной и легкой задачей. Поэтому, если есть такая возможность, приобретение элементов, не покрытых воском, является лучшим решением. Если обратить внимание на изображенные световые элементы, можно заметить, что они имеют припаянные проводники. Даже в этом случае придется поработать паяльником, а если же приобрести элементы без проводников – работы будет в разы больше.
Вместе с тем были приобретены пара наборов элементов, которые не были залиты воском, у другого продавца. Они пришли упакованными в коробку из пластика с незначительными сколами по бокам. В нашем случае сколы не являлись предметом для беспокойства, потому как не были способны ощутимо снизить эффективность всего элемента. Однако, возможно, кто-то сталкивался с более плачевными результатами повреждений при транспортировке, что необходимо иметь в виду. Приобретенных элементов было достаточно для изготовления двух солнечных батарей, даже с излишком, на случай непредвиденных повреждений или отказов.
Конечно, при изготовлении солнечной батареи можно использовать и другие световые элементы, в широком спектре размеров и форм присутствующих у продавцов. В этом случае необходимо помнить три вещи:
- Световые элементы одного типа генерируют идентичное напряжения, вне зависимости от размера и формы, поэтому их требуемое количество останется неизменным
- Генерация тока имеет прямую зависимость от размера элемента: большие генерируют больший ток, маленькие – меньший.
- Суммарная мощность солнечной батареи определяется ее напряжением, умноженным на ток.
Как видно, использование элементов большого размера при изготовлении солнечной батареи способно обеспечить более высокий показатель мощности, но вместе с тем и сделает саму батарею более громоздкой и тяжелой. В случае использования элементов меньшего размера, размер и вес готовой батареи уменьшится, однако вместе с тем уменьшится и выдаваемая мощность. Крайне не рекомендуется использование в одной батарее солнечных элементов разного размера, так как генерируемый батареей ток будет эквивалентен току самого маленького из используемых элементов.
Приобретенные в нашем случае солнечные элементы при размере 3х6 дюйма генерировали ток примерно в 3 ампера. При солнечной погоде, тридцать шесть, соединенных последовательно, элемента, способны выдавать порядка 60 Вт мощности. Цифра не особенно впечатляет, тем не менее, это лучше, чем ничего. Следует учитывать, что указанная мощность будет генерироваться каждый солнечный день, заряжая аккумулятор. В случае использования электроэнергии для осуществления питания светильников и аппаратуры с небольшим потреблением тока, такая мощность является вполне достаточной. Не нужно и забывать о ветрогенераторе, также производящем энергию.
После приобретения солнечных элементов далеко не лишним будет спрятать их от людских глаз в безопасное место, защищенное от детей и домашних животных, до того момента, когда возможно будет их непосредственная установка в солнечную батарею. Это жизненная необходимость, в виду крайне высокой хрупкости элементов и подверженности их механической деформации.
По сути корпус солнечной батареи, ни что иное, как простой неглубокий ящик. Ящик непременно необходимо изготовить неглубоким, для того чтобы его бортики не создавали тени, когда солнечный свет падает на батарею под большим углом. В качестве материала вполне подойдет фанера 3/8 дюйма и рейки для бортиков 3/4 дюйма толщиной. Для лучшей надежности крепление бортиков не лишним будет осуществить двумя способами – приклеиванием и привинчиванием. Для упрощения последующей пайки элементов, батарею лучше разделить на две части. Роль разделителя выполняет расположенная по центру ящика планка.
На этом небольшом наброске, можно увидеть размеры в дюймах(1 дюйм равен 2,54 см.), изготовленной в нашем случае солнечной батареи. Бортики расположены по всем краям и в середине батареи и имеют толщину 3/4 дюйма. Данный эскиз ни в коем случае не претендует на роль эталона при изготовлении батареи, он был сформирован скорее из личных предпочтений. Размеры приведены для наглядности, но в принципе они, как и дизайн, могут быть различны. Не бойтесь экспериментировать и вполне вероятно, батарея может получиться лучше, чем в нашем случае.
Вид на половину корпуса батареи, в которой будет производится размещение первой группы солнечных элементов. Небольшие отверстия, которые вы видите на бортиках, представляют собой не что иное, как вентиляционные отверстия. Они предназначены для удаления влаги и поддержания давления, эквивалентного атмосферному внутри батареи. Следует обратить особое внимание на расположении отверстий для вентиляции в нижней части корпуса батареи, потому как расположение их в верхней части приведет к попаданию излишней влаги извне. Также отверстия необходимо сделать и в планке, расположенной по центру.
Два вырезанных куска ДВП будут выполнять функцию подложек, т.е. на них будет производиться монтаж солнечных элементов. В качестве альтернативы ДВП подойдет любой тонкий материал, обладающий высокими показателями жесткости и не проводящий электрический ток.
Для защиты солнечной батареи от агрессивного воздействия климата и окружающей среды, используется оргстекло, которым необходимо закрывать лицевую сторону. В данном случае были вырезаны два куска, однако может использоваться и один большой. Использование обычного стекла не рекомендуется, по причине его повышенной хрупкости.
Вот незадача! Для обеспечения крепления на шурупы, было принято решение просверлить отверстия вокруг кромки. При сильном надавливании во время сверления, оргстекло может сломаться, что и произошло в нашем случае. Проблема была решена сверлением недалеко нового отверстия, а отколовшийся кусок просто приклеили.
После этого было произведено окрашивание всех деревянных частей солнечной батареи краской в несколько слоев, для повышения защиты конструкции от влаги и воздействия среды. Покраска осуществлялась как внутри, так и снаружи. Цвет краски, как и тип может варьироваться в широком диапазоне, в нашем случае была использована краска, имеющаяся в наличии в достаточном количестве.
Окраска подложек также была произведена с обеих сторон и в несколько слоев. Покраске подложки необходимо уделять особенное внимание, так при некачественной покраске, дерево может начать коробиться от воздействия влаги, что вероятно приведет к повреждению приклеенных к ней солнечных элементов.
Теперь, когда корпус солнечной батареи готов и просыхает самое время приступить к подготовке элементов.
Как уже упоминалось ранее, удаление воска с элементов – задача не из приятных. В ходе экспериментов, методом проб и ошибок, был найдет эффективный способ. Тем не менее, рекомендации по покупки не покрытых воском элементов, остались прежними.
Для растопки воска и отделения элементов друг от друга, необходимо отмочить солнечные элементы в горячей воде. При этом следует исключить возможность закипания воды, потому как бурное кипение может повредить элементы и нарушить их электрические контакты. Для исключения неравномерного нагрева, рекомендуется поместить элементы в холодную воду и плавно нагревать. Следует воздержать от вытягивания элементов из кастрюли за проводники, так как они могут оборваться.
На этом фото изображена окончательная версия аппарата для удаления воска. На заднем плане с правой стороны находится первая емкость, предназначенная для растапливания воска. Слева на переднем плане расположена емкость с горячей мыльной водой, а справа – чистая вода. Вода во всех емкостях довольно горячая, но ниже кипения воды. Нехитрый технологический процесс удаления воска заключается в следующем: в первой емкости необходимо растопить воск, затем элемент перенести в горячую мыльную воду для удаления остатков воска, в заключении промыть чистой водой. После очистки от воска, элементы необходимо просушить, для этого они были выложены на полотенце. Следует отметить что слив мыльной воды в канализацию недопустим, так как воск, остыв, затвердеет и засорит ее. Результатом процесса очистки является почти полное удаление воска с солнечных элементов. Оставшийся воск не способен помешать как пайке, так и работе элементов.
Солнечные элементы сушатся на полотенце после очистки. После удаления воска элементы стали значительно более хрупкими, что делает их более сложными в хранении и обращении. Рекомендуется не производить очистку до тех пор, пока не будет необходима их непосредственная установка в солнечную батарею.
Для упрощения процесса монтажа элементов, рекомендуется начать с отрисовки сетки на основе. После произведения отрисовки, элементы были выложены по сетке вверх обратной стороной, для того чтобы их спаять. Все восемнадцать элементов, расположенных в каждой половине были последовательно соединены, после чего были и соединены и половины, также последовательным способом, для получения необходимого напряжения
В начале спайка элементов между собой может показаться сложной, однако со временем она становится проще. Рекомендуется начать с двух элементов. Необходимо разместить проводники одного элемента таким образом, чтобы они пересекали точки пайки другого, также следует убедиться, что элементы установлены согласно разметке.
Для непосредственного осуществления пайки использовался паяльник малой мощности и прутковый припой с канифольной сердцевиной. Перед пайкой была произведена смазка точек пайки флюсом при помощи специального карандаша. Ни в коем случае не следует давить на паяльник. Элементы настолько хрупкие, что могут от небольшого давления придти в негодность.
Повторение пайки осуществлялась до образования цепочки, состоящей из шести элементов. Шины соединения от сломанных солнечных элементов, были припаяны к обратно стороне элемента цепочки, являющегося последним. Таких цепочек получилось три – итого 18 элементов первой половины батареи были благополучно объединены в сеть.
По причине того, что все три цепочки необходимо соединить последовательно, средняя цепочка была повернута на 180 градусов по отношению к другим. Общая ориентация цепочек в итоге получилось правильной. Следующим шагом является приклеивание элементов на место.
Для осуществления солнечных элементов может потребоваться некоторая сноровка. Необходимо нанести небольшую каплю герметика, изготовленного на основе силикона, в центре каждого элемента одной цепочки. После этого следует перевернуть цепочку лицевой стороной вверх и разместить солнечные элементы согласно нанесенной ранее разметке. Затем необходимо легонько прижать элементы, осторожно надавливая в центре, чтобы приклеить их. Значительные сложности могут возникнуть в основном при переворачивании гибкой цепочки, поэтому лишняя пара рук на это этапе не повредит.
Не рекомендуется наносить избыточное количество клея и приклеивать элементы по краям. Это обусловлено тем, что сами элементы и подложка, на которую они установлены, будут деформироваться при изменении условий влажности и температуры, что может привести к выходу элементов из строя.
Так выглядит собранная половина солнечной батареи. Для соединения первой и второй цепочек элементов была использована медная оплетка кабеля.
Для этих целей вполне подойдут специальные шины или даже медные провода. Аналогичное соединение необходимо произвести и с обратной стороны. Провод был прикреплен к основанию каплей герметика.
Тест первой изготовленной половины батареи на солнце. При слабой солнечной активности, изготовленная половина генерирует 9.31В. Довольно неплохо. Пора приступать к изготовлению второй половины батареи.
После того, как обе основы с солнечными элементами будут завершены, можно произвести их установку в подготовленную заранее коробку и соединить.
Каждая половина идеально помещается на свое место. Для крепления основы внутри батареи были использованы 4 шурупа небольшого размера.
Провод, предназначенный для соединения половин солнечной батареи, был пропущен через вентиляционное отверстие в центральном бортике и закреплен при помощи герметика.
Необходимо каждую солнечную панель в систему снабдить диодом блокирования, который должен быть соединен с батареей последовательно. Он предназначен для исключения разряда аккумулятора через батарею. Диод использовался Шоттки на 3.3А, обладающий значительно более низким падением напряжения, в сравнении с обычными диодами, что минимизирует потери мощности на диоде. Набор из двадцати пяти диодов марки 31DQ03 был приобретен всего за несколько долларов на eBay.
Исходя из технических характеристик диодов, наилучшим местом их размещения является внутренняя часть батареи. Связано это с зависимостью падения напряжения у диода от температуры. Так как температура внутри батареи будет выше окружающей, следовательно и эффективность диода повысится. Для закрепления диода был использован герметик.
Для того чтобы вывести наружу провода, было просверлено отверстие в днище солнечной батареи. Провода лучше завязать на узел и закрепить герметиком, для предотвращения их последующего вытягивания.
Крайне необходимо дать высохнуть герметику до установки защиты из оргстекла. Силиконовые испарения могут образовать пленку на внутренней поверхности оргстекла, если не дать силикону просохнуть на открытом воздухе.
Небольшое количество герметика для создания барьера от влаги.
На выходной провод солнечной батареи, был прикреплен двухконтактный разъем, розетка которого в будущем будет присоединена к контроллеру заряда аккумуляторных батарей, используемого для ветрогенератора. В итоге солнечная батарея и ветрогенератор смогут работать параллельно.
Вот так выглядит окончательная версия солнечной батареи с установленным экраном. Не стоит торопиться с герметизацией стыков оргстекла до произведения полного тестирования работоспособности батареи. Может случиться так, что на одном из элементов отошел контакт и потребуется доступ к внутренностям батареи для ликвидации проблемы.
Предварительные расчеты оправдались: законченная солнечная батарея на ярком осеннем солнце выдает 18.88В без нагрузки.
Этот тест был произведен при аналогичных условиях и показывает прекрасную работоспособность батареи – 3,05А.
Солнечная батарея в рабочих условиях. Для сохранения ориентации на солнце, батарея перемещается несколько раз в день, что само по себе не сложно. В перспективе возможна установка автоматического слежения за положением солнца на небосводе.
Итак, какова же конечная стоимость батареи, которую мы умудрились сделать своими руками? Учитывая то, что куски дерева, провода и прочие пригодившиеся в изготовлении батареи вещи были у нас в мастерской, наши с вами подсчеты могут немного отличаться. Конечная стоимость солнечной батареи составила 105 долларов с учетом 74 долларов, потраченных на приобретение самих элементов.
Согласитесь, не так уж и плохо! Это всего лишь малая часть стоимости заводской батареи эквивалентной мощности. И в этом нет ничего сложного! Для увеличения выходной мощности вполне можно соорудить несколько таких батарей.
kak-eto-sdelano.ru
для отопления дома, бассейна, теплицы, душа
Солнечный коллектор – это альтернативный источник получения тепловой энергии за счёт использования солнечной. Сейчас это удобное приспособление уже не новшество, но позволить себе его установку может далеко не каждый. Если подсчитать, покупка и монтаж коллектора, который удовлетворит бытовые нужды среднестатистической семьи, могут обойтись в пять тысяч американских долларов. Само собой, окупаемости такого источника придется ждать довольно долго. Но почему бы не сделать солнечный коллектор своими руками и установить его?
Виды
Стандартное устройство имеет вид металлической пластины, которая помещена в пластмассовый или стеклянный корпус. Поверхность этой пластины аккумулирует солнечную энергию, задерживает тепло и передаёт его для различных бытовых нужд: отопление, подогрев воды и т.д. Интегрированные коллекторы бывают нескольких видов.
Накопительные
Накопительные коллекторы ещё называют термосифонными. Такой солнечный коллектор своими руками без насоса получается наиболее выгодным. Его возможности позволяют не только подогревать воду, но и поддерживать температуру на необходимом уровне некоторое время.
Такой солнечный коллектор для отопления состоит из нескольких баков, наполненных водой, которые находятся в теплоизоляционном ящике. Баки накрыты стеклянной крышкой, через которую пробиваются солнечные лучи и подогревают воду. Этот вариант наиболее экономичен, прост в эксплуатации и в обслуживании, но его эффективность в зимнее время практически равна нулю.
Плоские
Ппредставляет собой большую металлическую пластину – абсорбер, который находится внутри алюминиевого корпуса со стеклянной крышкой. Плоский солнечный коллектор своими руками будет более эффективен при использовании именно крышки из стекла. Поглощает солнечную энергию через градостойкое стекло, которое хорошо пропускает свет и практически его не отражает.
Внутри ящика присутствует термоизоляция, что позволяет значительно снизить теплопотери. Сама пластина имеет низкий КПД, поэтому она покрыта аморфным полупроводником, который значительно увеличивает показатель аккумуляции тепловой энергии.
При изготовлении солнечного коллектора для бассейна своими руками, часто отдают предпочтение именно плоскому интегрированному устройству. Впрочем, он не хуже справляется и с другими задачами, такими как: подогрев воды для домашних нужд и отопление помещения. Плоский – самый широко используемый вариант. Абсорбер для солнечного коллектора своими руками предпочтительно делать из меди.
Жидкостные
Из названия понятно, что главным теплоносителем в них выступает именно жидкость. Водяной солнечный коллектор своими руками делается по следующей схеме. Через поглощающую солнечную энергию металлическую пластину, тепло передаётся по прикрепленным к ней трубам в бак с водой или незамерзающей жидкостью или прямо к потребителю.
К пластине подходят две трубы. Через одну из них подаётся холодная вода из бака, а через вторую в бак поступает уже подогретая жидкость. У труб обязательно должны присутствовать отверстия входа и выхода. Такую схему подогрева называют замкнутой.
Когда же подогретая вода напрямую подаётся для удовлетворения нужд пользователя – такую систему называют разомкнутой.
Неостекленные чаще применяются для нагрева воды в бассейне, поэтому сборка таких тепловых солнечных коллекторов своими руками не требует закупки дорогих материалов – сгодится резина и пластмасса. У остекленных КПД выше, поэтому они способны отапливать дом и обеспечивать потребителя горячей водой.
Воздушные
Воздушные устройства экономичнее вышеперечисленных аналогов, использующих воду в качестве теплоносителя. Воздух не замерзает, не подтекает и не кипит как вода. Если в такой системе происходит утечка, она не приносит столько проблем, однако определить где она произошла довольно сложно.
Самостоятельное изготовление не обходится потребителю дорого. Солнцеприемная панель, которая накрывается стеклом, нагревает воздух, который находится между ней и теплоизоляционной пластиной. Грубо говоря, это плоский коллектор, имеющий внутри пространство для воздуха. Внутрь поступает холодный воздух и под действием солнечной энергии подаётся потребителю тёплый.
Вентилятор, который крепится в воздуховод или непосредственно на пластину, улучшает циркуляцию и улучшает воздухообмен в устройстве. Для работы вентилятора требуется использование электричества, что не очень-то экономно.
Такие варианты долговечны и надёжны и обслуживать их проще, чем устройства, которые используют жидкость в качестве теплоносителя. Для поддержания нужной температуры воздуха в погребе или для отопления теплицы солнечным коллектором подойдёт как раз такой вариант.
Как это работает
Коллектор собирает энергию с помощью светонакопителя или, другим словами, солнцеприемной панели, которая пропускает свет к аккумулирующей металлической пластине, где солнечная энергия преобразуется в тепловую. Пластина передает тепло теплоносителю, которым может быть как жидкость, так и воздух. Вода отправляется по трубам к потребителю. С помощью такого коллектора можно отопить жилище, нагреть воду для различных домашних целей или бассейна.
Воздушные коллекторы используются, в основном для отопления помещения или подогрева воздуха внутри него. Экономия при использовании таких устройств очевидна. Во-первых, не нужно использовать какое-либо топливо, а во-вторых, снижается потребление электроэнергии.
Для того чтобы получить максимальный эффект от использования коллектора и бесплатно подогревать воду на протяжении семи месяцев в году, он должен иметь большую поверхность и дополнительные теплообменные устройства.
Коллектор Станилова
Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.
Конструкция коллектора
Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.
На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.
Материалы и детали для изготовления
Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:
- стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
- рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
- доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
- прокатный уголок;
- соединительная муфта;
- трубы для сборки радиатора;
- хомуты для крепления радиатора;
- лист оцинкованного железа;
- приёмная и выпускная труба радиатора;
- бак объемом 200−300 литров;
- аквакамера;
- теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).
Этапы работ
Этапы изготовления коллектора Станилова своими руками:
- Из досок сколачивается контейнер, дно которого укрепляется брусьями.
- На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
- После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
- Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
- Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
- Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
- Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
- После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
- Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.
Расчет размеров
Расчёт размеров для того чтобы изготовить солнечный коллектор для отопления своими руками, прежде всего, направлен на определение нагрузки системы теплоснабжения, покрытие которой берет на себя это устройство. Само собой, что подразумевается использование нескольких источников энергии в комплексе, а не только энергии солнца. В этом деле важно расположить систему таким образом, чтобы она взаимодействовала с другими – тогда это даст максимальный эффект.
Для определения площади коллектора нужно знать, для каких целей он будет использоваться: отопление, подогрев воды или и того, и другого. Проанализировав данные водомера, потребностей в обогреве и данные инсоляции местности, в которой планируется установка, можно высчитать площадь коллектора. К тому же, надо учесть потребности в горячей воде всех потребителей, которые планируется подключить к сети: стиральной машины, посудомоечной машины и т.д.
Селективное покрытие
Селективное покрытие выполняет едва ли не самую основную функцию в работе коллектора. Пластина или радиатор с нанесённым покрытием притягивают в разы больше солнечной энергии, превращая её в тепло. Можно приобрести специальный химикат в качестве селективного покрытия, а можно просто окрасить теплонакопитель в чёрный цвет.
Чтобы сделать селективное покрытие для солнечных коллекторов своими руками, можно применить:
- специальный готовый химикат;
- оксиды разных металлов;
- тонкий теплоизоляционный материал;
- чёрный хром;
- селективную краску для коллектора;
- чёрную краску или пленку.
Коллекторы из подручных материалов
Собрать солнечный коллектор для отопления дома своими руками и дешевле и интереснее, ведь изготовить его можно из различных подручных материалов.
Из металлических труб
Этот вариант сборки походит на коллектор Станилова. При сборке солнечного коллектора из медных труб своими руками, из труб варится радиатор и помешается в деревянный короб, проложенный изнутри теплоизоляцией.
Наиболее эффективными будут медные трубы, алюминиевые тоже можно использовать, но их тяжело варить, а вот стальные – наиболее удачный вариант.
Такой самодельный коллектор не должен быть чересчур большим, чтобы его было легко собрать и монтировать. Диаметр труб на солнечные коллектора для сварки радиатора должен быть меньше, чем у труб для ввода и вывода теплоносителя.
Из пластиковых и металлопластиковых труб
Как сделать солнечный коллектор своими руками, имея в домашнем арсенале пластиковые трубы? Они менее эффективны в качестве теплонакопителя, однако в разы дешевле меди и не коррозируют как сталь.
Трубы выкладываются в короб по спирали и закрепляются хомутами. Их можно покрыть черной или селективной краской для большей эффективности.
С укладкой труб можно экспериментировать. Так как трубы плохо гнутся, их можно укладывать не только по спирали, а и зигзагом. Среди преимуществ, пластиковые трубы легко и быстро поддаются пайке.
Из шланга
Чтобы сделать солнечный коллектор для душа своими руками понадобится резиновый шланг. Вода в нем нагревается очень быстро, поэтому его тоже можно использовать в качестве теплообменника. Это самый экономичный вариант при изготовлении коллектора своими руками. Шланг или полиэтиленовая труба укладывается в короб и прикрепляется хомутами.
Так как шланг скручен по спирали, в нем не будет происходить естественная циркуляция воды. Чтобы использовать в данной системе ёмкость для накопления воды, необходимо оснастить её циркуляционным насосом. Если это дачный участок и горячей воды уходит немного, то того её количества, которое буде поступать в трубу, может оказаться достаточно.
Из банок
Теплоносителем солнечного коллектора из алюминиевых банок выступает воздух. Банки соединяются между собой, образуя трубу. Чтобы сделать солнечный коллектор из пивных банок нужно обрезать днище и верх каждой банки, состыковать их между собой и склеить герметиком. Готовые трубы помещаются в деревянный короб и накрываются стеклом.
В основном, воздушный солнечный коллектор из пивных банок используют для устранения сырости в подвале или для обогрева теплицы. В качестве теплонакопителя можно использовать не только пивные банки, а и пластиковые бутылки.
Из холодильника
Солнечные водогрейные панели своими руками можно соорудить из непригодного холодильника или радиатора старого авто. Конденсатор, извлеченный из холодильника, надо хорошо промыть. Горячую воду, полученную таким способом, лучше использовать только для технических целей.
На дно короба расстилается фольга и резиновый коврик, потом на них укладывается конденсатор и закрепляется. Для этого можно применить ремни, хомуты, либо то крепление, которым он был прикреплен в холодильнике. Для создания давления в системе не помешает установить над баком насос или аквакамеру.
Видео
Вы узнаете, как сделать солнечный коллектор своими руками, из следующего видео.
solar-energ.ru
Солнечная батарея, сделай сам
Как сделать солнечную батарею своими руками
Все больше людей стремится к приобретению домов, находящихся в отдалении от очагов цивилизации. Причин этому существует множество, главная из которых, наверное, экологическая. Ни для кого не секрет, что интенсивное развитие промышленности пагубно сказывается на состоянии окружающей среды. Но при покупке такого дома можно столкнуться с отсутствием электроснабжения, без которого жизнь в двадцать первом веке едва ли можно себе представить.
Проблему обеспечения энергией здания, находящегося далеко от очагов цивилизации можно попробовать решить установкой ветрогенератора. Однако этот способ далеко не идеален. Для того, чтобы электроэнергии хватило на весь дом потребуется установка большого ветряка или нескольких, но и в этом случае энергообеспечение будет носить эпизодический характер, отсутствуя в безветренную погоду.
Для обеспечения стабильности энергообеспечения дома, эффективным решением является совместное использование ветрогенератора и солнечной батареи, но, к сожалению, батареи далеко не дешевы. Решением этих сложностей было бы производство солнечной батареи своими руками, способной на равных конкурировать с заводскими по мощности, но в то же время приятно отличаться от них ценой. И такое решение есть!
Для начала, необходимо определиться, что же представляет собой солнечная батарея. По своей сути, это контейнер, содержащий в себе массив, преобразующих солнечную энергию в электрическую, элементов. Слово «массив» применимо в данном случае, потому что для генерации достаточных объемов энергии, необходимых в условиях энергообеспечения жилого дома, солнечных элементов потребуется довольно внушительное количество. В виду высокой хрупкости элементов, их в обязательном порядке объединяют в батарею, которая обеспечивает им защиту от механических повреждений и объединяет вырабатываемую энергию. Как видно, в принципиальном устройстве солнечной батареи нет ничего по-настоящему сложного, поэтому ее вполне можно сделать своими руками.
Перед тем, как приступать непосредственно к действиям, принято проводить глубокую теоретическую подготовку, чтобы избежать лишних трудностей и издержек в процессе. Именно на этом этапе многие энтузиасты сталкиваются с первым препятствием – практически полным отсутствием полезной с практической точки зрения информации. Именно это явление создает надуманную видимость сложности солнечных батарей: раз их никто не делает сам, значит это сложно. Однако, задействовав логическое мышление можно придти к следующим выводам:
§основа целесообразности всего процесса заключается в приобретении солнечных элементов по доступной цене
§покупка новых элементов исключена, ввиду их высокой стоимости и сложности покупки в необходимом количестве.
§солнечные элементы, обладающие дефектами и повреждениями, могут быть приобретены на аукционе eBay и в других источниках, по значительно более низким ценам, чем новые.
§дефектные элементы вполне могут быть использованы в заданных условиях.
На основе сделанных выводов, становится ясно, что следующим шагом в изготовлении солнечной батареи будет покупка дефектных солнечных элементов. В нашем случае элементы были куплены на eBay.
Приобретенные монокристаллические солнечные элементы имели размер 3х6 дюйма, и каждый их них выдавал порядка 0.5В энергии. Таким образом, соединенные последовательно 36 таких элементов, в общей сложности выдают около 18В, которых достаточно для эффективной подзарядки 12В аккумулятора. Следует помнить, что такие солнечные элементы хрупкие и ломкие, поэтому вероятность их повреждения при неосторожном обращении крайне высока.
Для обеспечения защиты от механических повреждений продавец покрыл воском наборы из восемнадцати штук. С одной стороны это эффективная мера, позволяющая избежать повреждений во время транспортировки, с другой стороны – лишние проблемы, так как удаление воска вряд ли кому-то покажется приятной и легкой задачей. Поэтому, если есть такая возможность, приобретение элементов, не покрытых воском, является лучшим решением. Если обратить внимание на изображенные световые элементы, можно заметить, что они имеют припаянные проводники. Даже в этом случае придется поработать паяльником, а если же приобрести элементы без проводников – работы будет в разы больше.
Вместе с тем были приобретены пара наборов элементов, которые не были залиты воском, у другого продавца. Они пришли упакованными в коробку из пластика с незначительными сколами по бокам. В нашем случае сколы не являлись предметом для беспокойства, потому как не были способны ощутимо снизить эффективность всего элемента. Однако, возможно, кто-то сталкивался с более плачевными результатами повреждений при транспортировке, что необходимо иметь в виду. Приобретенных элементов было достаточно для изготовления двух солнечных батарей, даже с излишком, на случай непредвиденных повреждений или отказов.
Конечно, при изготовлении солнечной батареи можно использовать и другие световые элементы, в широком спектре размеров и форм присутствующих у продавцов. В этом случае необходимо помнить три вещи:
1.Световые элементы одного типа генерируют идентичное напряжения, вне зависимости от размера и формы, поэтому их требуемое количество останется неизменным
2.Генерация тока имеет прямую зависимость от размера элемента: большие генерируют больший ток, маленькие – меньший.
3.Суммарная мощность солнечной батареи определяется ее напряжением, умноженным на ток.
Как видно, использование элементов большого размера при изготовлении солнечной батареи способно обеспечить более высокий показатель мощности, но вместе с тем и сделает саму батарею более громоздкой и тяжелой. В случае использования элементов меньшего размера, размер и вес готовой батареи уменьшится, однако вместе с тем уменьшится и выдаваемая мощность. Крайне не рекомендуется использование в одной батарее солнечных элементов разного размера, так как генерируемый батареей ток будет эквивалентен току самого маленького из используемых элементов.
Приобретенные в нашем случае солнечные элементы при размере 3х6 дюйма генерировали ток примерно в 3 ампера. При солнечной погоде, тридцать шесть, соединенных последовательно, элемента, способны выдавать порядка 60 Вт мощности. Цифра не особенно впечатляет, тем не менее, это лучше, чем ничего. Следует учитывать, что указанная мощность будет генерироваться каждый солнечный день, заряжая аккумулятор. В случае использования электроэнергии для осуществления питания светильников и аппаратуры с небольшим потреблением тока, такая мощность является вполне достаточной. Не нужно и забывать о ветрогенераторе, также производящем энергию.
После приобретения солнечных элементов далеко не лишним будет спрятать их от людских глаз в безопасное место, защищенное от детей и домашних животных, до того момента, когда возможно будет их непосредственная установка в солнечную батарею. Это жизненная необходимость, в виду крайне высокой хрупкости элементов и подверженности их механической деформации.
По сути корпус солнечной батареи, ни что иное, как простой неглубокий ящик. Ящик непременно необходимо изготовить неглубоким, для того чтобы его бортики не создавали тени, когда солнечный свет падает на батарею под большим углом. В качестве материала вполне подойдет фанера 3/8 дюйма и рейки для бортиков 3/4 дюйма толщиной. Для лучшей надежности крепление бортиков не лишним будет осуществить двумя способами – приклеиванием и привинчиванием. Для упрощения последующей пайки элементов, батарею лучше разделить на две части. Роль разделителя выполняет расположенная по центру ящика планка.
На этом небольшом наброске, можно увидеть размеры в дюймах(1 дюйм равен 2,54 см.), изготовленной в нашем случае солнечной батареи. Бортики расположены по всем краям и в середине батареи и имеют толщину 3/4 дюйма. Данный эскиз ни в коем случае не претендует на роль эталона при изготовлении батареи, он был сформирован скорее из личных предпочтений. Размеры приведены для наглядности, но в принципе они, как и дизайн, могут быть различны. Не бойтесь экспериментировать и вполне вероятно, батарея может получиться лучше, чем в нашем случае.
Вид на половину корпуса батареи, в которой будет производится размещение первой группы солнечных элементов. Небольшие отверстия, которые вы видите на бортиках, представляют собой не что иное, как вентиляционные отверстия. Они предназначены для удаления влаги и поддержания давления, эквивалентного атмосферному внутри батареи. Следует обратить особое внимание на расположении отверстий для вентиляции в нижней части корпуса батареи, потому как расположение их в верхней части приведет к попаданию излишней влаги извне. Также отверстия необходимо сделать и в планке, расположенной по центру.
Два вырезанных куска ДВП будут выполнять функцию подложек, т.е. на них будет производиться монтаж солнечных элементов. В качестве альтернативы ДВП подойдет любой тонкий материал, обладающий высокими показателями жесткости и не проводящий электрический ток.
Для защиты солнечной батареи от агрессивного воздействия климата и окружающей среды, используется оргстекло, которым необходимо закрывать лицевую сторону. В данном случае были вырезаны два куска, однако может использоваться и один большой. Использование обычного стекла не рекомендуется, по причине его повышенной хрупкости.
Вот незадача! Для обеспечения крепления на шурупы, было принято решение просверлить отверстия вокруг кромки. При сильном надавливании во время сверления, оргстекло может сломаться, что и произошло в нашем случае. Проблема была решена сверлением недалеко нового отверстия, а отколовшийся кусок просто приклеили.
После этого было произведено окрашивание всех деревянных частей солнечной батареи краской в несколько слоев, для повышения защиты конструкции от влаги и воздействия среды. Покраска осуществлялась как внутри, так и снаружи. Цвет краски, как и тип может варьироваться в широком диапазоне, в нашем случае была использована краска, имеющаяся в наличии в достаточном количестве.
Окраска подложек также была произведена с обеих сторон и в несколько слоев. Покраске подложки необходимо уделять особенное внимание, так при некачественной покраске, дерево может начать коробиться от воздействия влаги, что вероятно приведет к повреждению приклеенных к ней солнечных элементов.
Теперь, когда корпус солнечной батареи готов и просыхает самое время приступить к подготовке элементов.
Как уже упоминалось ранее, удаление воска с элементов – задача не из приятных. В ходе экспериментов, методом проб и ошибок, был найдет эффективный способ. Тем не менее, рекомендации по покупки не покрытых воском элементов, остались прежними.
Для растопки воска и отделения элементов друг от друга, необходимо отмочить солнечные элементы в горячей воде. При этом следует исключить возможность закипания воды, потому как бурное кипение может повредить элементы и нарушить их электрические контакты. Для исключения неравномерного нагрева, рекомендуется поместить элементы в холодную воду и плавно нагревать. Следует воздержать от вытягивания элементов из кастрюли за проводники, так как они могут оборваться.
На этом фото изображена окончательная версия аппарата для удаления воска. На заднем плане с правой стороны находится первая емкость, предназначенная для растапливания воска. Слева на переднем плане расположена емкость с горячей мыльной водой, а справа – чистая вода. Вода во всех емкостях довольно горячая, но ниже кипения воды. Нехитрый технологический процесс удаления воска заключается в следующем: в первой емкости необходимо растопить воск, затем элемент перенести в горячую мыльную воду для удаления остатков воска, в заключении промыть чистой водой. После очистки от воска, элементы необходимо просушить, для этого они были выложены на полотенце. Следует отметить что слив мыльной воды в канализацию недопустим, так как воск, остыв, затвердеет и засорит ее. Результатом процесса очистки является почти полное удаление воска с солнечных элементов. Оставшийся воск не способен помешать как пайке, так и работе элементов.
Солнечные элементы сушатся на полотенце после очистки. После удаления воска элементы стали значительно более хрупкими, что делает их более сложными в хранении и обращении. Рекомендуется не производить очистку до тех пор, пока не будет необходима их непосредственная установка в солнечную батарею.
Для упрощения процесса монтажа элементов, рекомендуется начать с отрисовки сетки на основе. После произведения отрисовки, элементы были выложены по сетке вверх обратной стороной, для того чтобы их спаять. Все восемнадцать элементов, расположенных в каждой половине были последовательно соединены, после чего были и соединены и половины, также последовательным способом, для получения необходимого напряжения
В начале спайка элементов между собой может показаться сложной, однако со временем она становится проще. Рекомендуется начать с двух элементов. Необходимо разместить проводники одного элемента таким образом, чтобы они пересекали точки пайки другого, также следует убедиться, что элементы установлены согласно разметке.
Для непосредственного осуществления пайки использовался паяльник малой мощности и прутковый припой с канифольной сердцевиной. Перед пайкой была произведена смазка точек пайки флюсом при помощи специального карандаша. Ни в коем случае не следует давить на паяльник. Элементы настолько хрупкие, что могут от небольшого давления придти в негодность.
Повторение пайки осуществлялась до образования цепочки, состоящей из шести элементов. Шины соединения от сломанных солнечных элементов, были припаяны к обратно стороне элемента цепочки, являющегося последним. Таких цепочек получилось три – итого 18 элементов первой половины батареи были благополучно объединены в сеть.
По причине того, что все три цепочки необходимо соединить последовательно, средняя цепочка была повернута на 180 градусов по отношению к другим. Общая ориентация цепочек в итоге получилось правильной. Следующим шагом является приклеивание элементов на место.
Для осуществления солнечных элементов может потребоваться некоторая сноровка. Необходимо нанести небольшую каплю герметика, изготовленного на основе силикона, в центре каждого элемента одной цепочки. После этого следует перевернуть цепочку лицевой стороной вверх и разместить солнечные элементы согласно нанесенной ранее разметке. Затем необходимо легонько прижать элементы, осторожно надавливая в центре, чтобы приклеить их. Значительные сложности могут возникнуть в основном при переворачивании гибкой цепочки, поэтому лишняя пара рук на это этапе не повредит.
Не рекомендуется наносить избыточное количество клея и приклеивать элементы по краям. Это обусловлено тем, что сами элементы и подложка, на которую они установлены, будут деформироваться при изменении условий влажности и температуры, что может привести к выходу элементов из строя.
Так выглядит собранная половина солнечной батареи. Для соединения первой и второй цепочек элементов была использована медная оплетка кабеля.
Для этих целей вполне подойдут специальные шины или даже медные провода. Аналогичное соединение необходимо произвести и с обратной стороны. Провод был прикреплен к основанию каплей герметика.
Тест первой изготовленной половины батареи на солнце. При слабой солнечной активности, изготовленная половина генерирует 9.31В. Довольно неплохо. Пора приступать к изготовлению второй половины батареи.
После того, как обе основы с солнечными элементами будут завершены, можно произвести их установку в подготовленную заранее коробку и соединить.
Каждая половина идеально помещается на свое место. Для крепления основы внутри батареи были использованы 4 шурупа небольшого размера.
Провод, предназначенный для соединения половин солнечной батареи, был пропущен через вентиляционное отверстие в центральном бортике и закреплен при помощи герметика.
Необходимо каждую солнечную панель в систему снабдить диодом блокирования, который должен быть соединен с батареей последовательно. Он предназначен для исключения разряда аккумулятора через батарею. Диод использовался Шоттки на 3.3А, обладающий значительно более низким падением напряжения, в сравнении с обычными диодами, что минимизирует потери мощности на диоде. Набор из двадцати пяти диодов марки 31DQ03 был приобретен всего за несколько долларов на eBay.
Исходя из технических характеристик диодов, наилучшим местом их размещения является внутренняя часть батареи. Связано это с зависимостью падения напряжения у диода от температуры. Так как температура внутри батареи будет выше окружающей, следовательно и эффективность диода повысится. Для закрепления диода был использован герметик.
Для того чтобы вывести наружу провода, было просверлено отверстие в днище солнечной батареи. Провода лучше завязать на узел и закрепить герметиком, для предотвращения их последующего вытягивания.
Крайне необходимо дать высохнуть герметику до установки защиты из оргстекла. Силиконовые испарения могут образовать пленку на внутренней поверхности оргстекла, если не дать силикону просохнуть на открытом воздухе.
Небольшое количество герметика для создания барьера от влаги.
На выходной провод солнечной батареи, был прикреплен двухконтактный разъем, розетка которого в будущем будет присоединена к контроллеру заряда аккумуляторных батарей, используемого для ветрогенератора. В итоге солнечная батарея и ветрогенератор смогут работать параллельно.
Вот так выглядит окончательная версия солнечной батареи с установленным экраном. Не стоит торопиться с герметизацией стыков оргстекла до произведения полного тестирования работоспособности батареи. Может случиться так, что на одном из элементов отошел контакт и потребуется доступ к внутренностям батареи для ликвидации проблемы.
Предварительные расчеты оправдались: законченная солнечная батарея на ярком осеннем солнце выдает 18.88В без нагрузки.
Этот тест был произведен при аналогичных условиях и показывает прекрасную работоспособность батареи – 3,05А.
Солнечная батарея в рабочих условиях. Для сохранения ориентации на солнце, батарея перемещается несколько раз в день, что само по себе не сложно. В перспективе возможна установка автоматического слежения за положением солнца на небосводе.
Итак, какова же конечная стоимость батареи, которую мы умудрились сделать своими руками? Учитывая то, что куски дерева, провода и прочие пригодившиеся в изготовлении батареи вещи были у нас в мастерской, наши с вами подсчеты могут немного отличаться. Конечная стоимость солнечной батареи составила 105 долларов с учетом 74 долларов, потраченных на приобретение самих элементов.
Согласитесь, не так уж и плохо! Это всего лишь малая часть стоимости заводской батареи эквивалентной мощности. И в этом нет ничего сложного! Для увеличения выходной мощности вполне можно соорудить несколько таких батарей.
Если статья понравилась, то поделитесь с друзьями в социальных сетях, буду благодарна!
izent.ru
Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях
Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.
Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.
Содержание
Принцип работы солнечной батареи
Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.
КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.
Технические характеристики
Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.
Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.
(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)
Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.
Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Солнечная батарея своими руками
Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.
Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.
Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.
Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.
Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.
Современные устройства со встроенными солнечными модулями
- Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
- Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
- Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.
Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.
mbhn.ru