Из чего состоит металлоискатель: Как сделать металлоискатель своими руками

Как сделать металлоискатель своими руками

   Многие любители поиска сокровищ, и просто люди пытающиеся сэкономить, задаются вопросом как сделать металлоискатель своими руками. Мы же сразу отметим, что из подручных средств можно сделать любительское устройство металлодетектора по своим характеристикам намного уступающее профессиональным приборам. Хоть что бы как то наблизится по уровню поиска к ним, нужно как минимум хорошо знать радиотехнику, разбираться в схемотехнике и затратить намного больше времени и средств чем предлагается нами в этой статье. Мы же приводим инструкцию о том, как сделать самый простой металлоискатель в домашних условиях своими руками. По этому, не стоит ожидать от него чего то большего чем выявление небольших металлических объектов на (или) неглубоко в земле. Самодельный металлоискатель также годится как прибор для развлечения с детьми, обнаружения гаек, гвоздей, монеток. Для более серьезных целей следует купить металлоискатель профессионального типа.  Прежде чем переходить хоть к каким-то действиям, что бы сделать металлоискатель своими руками нужно понимать, что же он собою являет и по каких принципах работает.

   Подавляющее большинство металлоискателей независимо от типа имеют схожую конструкцию. По этому, предложенные нами методы создания металлоискателя своими руками отличаются только отчасти. Профессиональный металлоискатель состоит из нескольких частей: ручки которая приспособлена для комфортного ношения и детектирования, самого детектора – зачастую им служит котушка и коробки управления в которую входит аккумулятор, микродинамик, плата или микропроцессор.

Принцип работы металлоискателя

   Металлоискатели любой сложности для обнаружения металла работают на эффекте смены магнитного поля испускаемого котушкой детектором. Магнитное поле поисковой котушки направляется в землю, и при проведении котушкой над металлическим объектом меняет свою  тональность. Эти перемены улавливаются второй котушкой которая сообщает также про находку через тональный сигнализатор. Таким образом, в непосредственной близости с металлическим объектом из за эффекта магнитного притяжения меняется тональность поля которую мы и регистрируем. Также, становится очевидным тот факт что чем больше поисковая котушка тем мощнее будет прибор. Но, для обнаружения мелких объектов предпочтительно иметь одновременно мощную но маленькую котушку, такое сочетание практически невозможно сделать в металлоискателе своими руками. Как видим для создания металлоискателя нужно в первую очередь сделать поисковую головку – детектор, который и будет улавливать сигнал. Мы предлагаем две простые но работающие инструкции для создания самого простого металлоискателя своими руками из подручных средств.  

Как сделать металлоискатель своими руками из радиоприемника

   Для этого нам понадобится радиоприемник работающий в AM диапазоне. Помимо него также нужно использовать бытовой калькулятор. Эти два устройства и будут аналогом детектора металлоискателя. Главное закрепить эти два прибора в непосредственной близости друг от друга на плоской твердой поверхности. Этой поверхностью может служить фанера или пластик. Также, важно зафиксировать устройства с помощью скотча или изоляционной ленты. В качестве плоской твердой поверхности из подручных материалов лучше всего подойдет коробка от компакт-диска. И так, мы вплотную подошли к вопросу как сделать металлоискатель используя радиоприемник. Следуем нескольким шагам:

  1. Прикрепляем скотчем или изолентой радиоприемник на внутренней стороне створки от CD-диска
  2. Аналогично на второй створке прикрепляем калькулятор
  3. Включаем радиоприемник и настраиваем его на самую высокую частоту AM диапазона. Но так, что бы не было слышно сигнала от радиостанций. Стараемся сделать максимально громкий звук.
  4. Включаем калькулятор
  5. Складываем коробку от компакт-диска
  6. Немного разводим створки коробки от CD что бы добиться оптимального качества звука.
  7. Проверяем металлоискатель – подносим к любому металлическому объекту и слышим громкий звук.
  8. Полученную поисковую систему для удобства можно прикрепить к палке или самодельному держателю

   Отлично. Мы получили рабочий прибор, то есть сделали металлоискатель, используя только подручные материалы и собственные руки. В качестве источника магнитного поля в этой схеме мы используем калькулятор, а приемником сигнала служит радиоприемник. Магнитное поле калькулятора влияет на выходной сигнал радиоприемника таким образом, что мы слышим характерные звуки в виде треска. Если возле калькулятора обнаружится металлический объект, то сигнал на выходе приемника исказится и мы зафиксируем это искажение на слух. Вместо радиоприемника можно использовать другие подручные средства, например – компакт-диски. Рассмотрим второй метод создания металлоискателя в домашних условиях.

Как сделать металлоискатель своими руками с помощью дисков

   Как и в первом случае, тут мы тоже используем калькулятор, но в качестве приемника сигнала будет использована пара обычных дисков, батарея на 9 Вольт и наушники для фиксации звука.

   И так, если Вам интересно как сделать металлоискатель с помощью дисков, то следуйте таким простым шагам:

  1. Ножницами отрезаем штепсель наушников и оголяем два провода. Получаем два медных провода разных цветов (допустим красного и синего)
  2. Берем CD диск и с помощью суперклея приклеиваем один из пары проводов (пусть будет синий) на его пишущую поверхность
  3. Таким же образом но только на DVD диск приклеиваем уже красный провод. Получаем два диска от которых идут два разных провода от наушников.
  4. Надежно прикрепляем провода к дискам изолентой или скотчем
  5. Берем батарейку на 9V и присоединяем синий провод от наушников к минусу, красный к плюсу.
  6. Получаем конструкцию в виде двух дисков от которых идут разные провода также присоединены к батарее
  7. Берем калькулятор и прикрепляем его с помощью изоляционной ленты на CD диск
  8. Кладем DVD диск поверх калькулятора, соединяем оба диска с помощью изоленты.
  9. Ложим батарейку сверху на DVD диск и закрепляем ее с помощью изоленты

   Вот мы и сделали металлоискатель своими руками вторым способом. Можно также как и в первом случае прикрепить детектор к ручке. Проводя диски над металлическим объектом, можно будет услышать специфические звуки в наушниках. Любой из этих двух предложенных методов поможет сделать простой рабочий металлоискатель своими руками в домашних условиях. Без сложных схем и серьезных усилий и затрат.

Но, если Вам нужен качественный прибор профессионального уровня рекомендуем купить металлоискатель от известных производителей. Удачи в поисках!

Простейший металлоискатель своими руками / Хабр

Привет, Хабр! Что объединяет радиоприёмник, датчик охранной сигнализации, металлоискатель и музыкальный инструмент терменвокс? Прежде всего то, что все эти устройства реагируют на электрические и магнитные поля. А ещё многие из них имеют в своём принципе действия нечто общее.

Сегодня мы изучим историю и принцип работы металлоискателей, — индуктивных и ёмкостных датчиков, узнаем, что такое

гетеродин, а также соберём и испытаем простой опытный экземпляр.

Началась эта история очень давно. В 1918 году изобретатель частотной модуляции в радиосвязи (благодаря которой мы можем слушать высококачественные стереопередачи на ультракоротких волнах), Эдвин Армстронг и Вальтер Шоттки, изобретатель одноимённого диода с малым прямым падением напряжения…


На самом деле, Вальтер Герман Шоттки полупроводникового диода не изобретал, зато разработал инновационную теорию о физических процессах в кристаллах, в частности, вакансиях атомов, предсказавшую эффект Шоттки, используемый в этих самых диодах. А ещё изобрёл вакуумный тетрод, — электронную лампу с экранирующей сеткой, позволившую значительно снизить проходную ёмкость, и повысить внутреннее сопротивление. И коэффициент усиления, а точнее, крутизну характеристики.


А Эдвин Говард Армстронг

сделал для мира радиосвязи очень много. Например, регенеративные и сверхрегенеративные приёмники с положительной обратной связью, позволявшие получить прекрасную чувствительность при малом количестве ламп, то есть, низкой цене и высокой доступности. Но надо отметить, что эти радиоприёмники капризны в настройке, а при неверной настройке могут излучать в эфир помехи, мешая окружающим радиослушателям. Что было особенно актуально в эпоху гигантских винтажных антенн, своим размером компенсировавших несовершенство электронной аппаратуры.

Ещё частотная модуляция впоследствии оказалась жизненно необходима для записи цифровой информации на магнитные носители. Так что без Армстронга не было бы и «винчестеров», они же накопители на жёстких дисках. Как и на гибких, если вы помните, что такое дисковод.

Что такое QSL-карта, вы точно не помните. В противном случае — напишите комментарий. Радиолокаторами Армстронг занимался тоже, в том числе участвовал в проекте «Диана», положившем начало радиолокационной астрономии.

Сигналы радара посылались в направлении Луны, и принимались как специалистами проекта, так и радиолюбителями.

Хотя это всё официальные версии. Для чего на самом деле были нужны огромные антенны HAARP и подобных проектов, у разных людей разные мнения. Можете поделиться своими.

▍ Супергетеродин

Так вот, в 1917-18 годах начальник полутора киловаттной радиостанции Эйфелевой башни Люсьен Леви (на фото слева) подал два патента на супергетеродинный радиоприёмник, который в 1918 году построил на базе идей Леви работавший тогда под его началом Эдвин Армстронг. Независимо от них, в 1918 супергетеродин изобрёл и Вальтер Шоттки, работавший в немецкой компании Siemens & Halske.

Супергетеродином называется радиоприёмник, в котором, кроме принимающего колебательного контура, имеется перестраиваемый синхронно с последним генератор — гетеродин. Смешение его сигнала с усиленным сигналом радиочастоты приводит к появлению двух сигналов.

Частота первого является суммой двух частот и не используется, фильтры её подавляют. Зато второй сигнал, частота которого является разностью частот входного сигнала и гетеродина, проходит через фильтр промежуточной частоты, и далее на детектор и усилитель звуковой частоты.

Такая система позволяет значительно повысить чувствительность и избирательность радиоприёмника, так как тракт промежуточной частоты не требуется перестраивать, и его можно реализовать очень прецизионно. Например, с использованием кварцевых или керамических резонаторов.


Сам принцип гетеродина открыт ещё раньше. В 1901 году канадец

Реджинальд Обри Фессенден изобрёл и использовал гетеродин, разность частоты которого с частотой принимаемого сигнала лежала в звуковом диапазоне. Это позволяло принимать немодулированный телеграфный сигнал, представлявший собой просто синусоиду несущей частоты.


А уж сам факт биений с разностной частотой при сложении двух колебаний известен ещё с древности. История его открытия теряется далеко в веках. Биения помогают настраивать музыкальные инструменты. Например, гитары и другие струнные щипковые настраивают по биениям между открытой струной и соседней, прижатой на определённом ладу, а также по флажолетам над определёнными ладами.

Причём настройщики фортепиано и других гармоник придерживаются не пифагорейских чистых квинт и чистых октав, то есть, не настраивают струны и другие генераторы тона до прекращения биений, а отсчитывают определённое число биений в секунду. Так добиваются нужного строя.

Например, современной равномерной темперации, позволяющей легко транспонировать и модулировать музыкальные фрагменты и произведения из тональности в тональность. Или хорошей темперации, которую любил Иоганн Себастьян Бах, и не любил равномерную. Или чего-то другого, исторического либо экспериментального.

А самые точные на сегодня тюнеры, — приборы для настройки музыкальных инструментов, — используют стробоскопический эффект, либо его визуализацию на экране. Этот эффект тоже относится к числу явлений биений разностной частоты при сложении двух колебаний, даже если речь идёт о механических колебаниях струны и оптической модуляции яркости света.

▍ Терменвокс

В 1919-20 годах Лев Сергеевич Термен

, будущий начальник и по совместительству заключённый той самой «шарашки», в которую попал Александр Солженицын, по мотивам чего впоследствии написал «В круге первом», изобрёл музыкальный инструмент этерофон, более известный как терменвокс. Он стал первым в мире ЭМИ — электронным музыкальным инструментом.

Напишите в комментариях, что на данном фото свидетельствует об использовании секретного атмосферного электричества. Это сейчас модно.

Как можно было изобрести музыкальный инструмент в лаборатории, где разрабатывались ёмкостные датчики для научных и охранных целей? — Почти просто. Ведь терменвокс и является ёмкостным датчиком. Вот только для того, чтобы увидеть и услышать в датчике инструмент, нужно любить музыку и быть музыкантом. А Термен, выпускник Петербургской консерватории по классу виолончели, музыку очень любил.

Терменвокс в классическом виде представляет собой два электронных генератора, колебательный контур одного из которых подключён к антенне. Поднося к ней руку, можно изменять частоту колебаний, и, таким образом, получается музыкальный тон разностной частоты, детектируемый и усиливаемый звуковоспроизводящей аппаратурой. То есть, терменвокс — это супергетеродин.

Вторая антенна работает таким же образом, и служит для управления громкостью звука, позволяя делать виртуозные амплитудные вибрато, они же тремоло. Терминологические холивары о том, что называть вибрато, а что тремоло, среди музыкантов весьма популярны, хотя и не настолько, насколько дискуссии о том, кто из звёздных музыкантов не умеет играть на своём инструменте. Зато гораздо популярнее споров, на тему, какая темперация лучше. Последние — удел избранных.

Что до терменвоксов, то большинство их моделей вообще не предоставляют музыканту фиксированного звуковысотного ряда. Высота ноты целиком зависит от исполнителя. И только немногие терменвоксы реализуют квантование частоты, проще говоря, автотюн.

На сегодня самым успешным серийным производителем терменвоксов является компания Роберта Моуга — пионера и непревзойдённого изобретателя аналоговых синтезаторов.

На фото он с Кларой Рокмор, ведущей мировой исполнительницей на терменвоксе.

А здесь Бильбо Бэггинс с Кольцом Власти демонстрирует инновационный полотенцесушитель, работающий от атмосферного электричества. Внутри кафедры находится тайник с амальгамой красной ртути.

На самом деле это Боб Моуг играет на терменвоксе. Хотя предки Льва Сергеевича Пьер Этьен и Франсуа Клод Термен были известными ювелирами, и с амальгамой работали. Их работы хранятся в Лувре, Эрмитаже и Оружейной палате. Например, этот скипетр Георгия XII.


▍ Металлоискатель

А если внешнее воздействие приложено не к ёмкости колебательного контура через антенну, а к его индуктивности, получается, соответственно, не ёмкостный, а индуктивный датчик, то есть металлоискатель. С помощью которого можно найти сокровища наподобие скипетра, либо просто металлолом. Что тоже интересно.

Свист в наушниках металлоискателя — это и есть биения, образуемые расстройкой контура с катушкой датчика относительно эталонного. А расстройку через изменение индуктивности вызывает находящийся вблизи катушки металлический предмет.

Один из самых простейших вариантов металлоискателя мы сейчас соберём. Как обычно, из набора с Алиэкспресс.

Приятно держать в руках катушки индуктивности, изготовленные методом печатного монтажа. Это не только ощущение прикосновения к современным технологиям, но и стабильность параметров благодаря жёсткости конструкции. Стабильность повторяемая, так как печатные платы изготавливаются серийно с высокой точностью.

На фото два конденсатора плёночные, а мне досталась более дешёвая версия набора, где все конденсаторы, кроме оксидного, он же электролит, керамические дисковые «флажки». Немного обидно, но не смертельно. Работать будет.

▍ Изучаем схему


На схеме мы видим не два, а всего лишь один LC генератор на транзисторе Q1. Параллельный колебательный контур образован индуктивностью L1 и ёмкостью С3. L2 — катушка обратной связи, C2 — её развязка по постоянному току. R1 — резистор смещения, задающий режим Q1, а С1 — фильтр питания.

Секрет схемы состоит в подстроечном резисторе W. Его сопротивление задаёт коэффициент усиления каскада на Q1, и установить движок этого подстроечника при настройке прибора следует так, чтобы генерация находилась на краю срыва.

На транзисторах Q2 и Q3 собран детектор. Когда генератор работает, и амплитуда колебаний в контуре L1C3 превышает 0.6 вольта (это порог открытия кремниевого транзистора Q2, он же напряжение прямого смещения эмиттерного перехода), Q2 открывается отрицательной полуволной и разряжает конденсатор C4. При этом Q3 закрыт, и зуммер не звучит.

Когда колебательный контур испытывает отток энергии на какой-либо металлический предмет, мощности вынужденных колебаний в контуре перестаёт хватать для функционирования обратной связи. Генерация срывается, Q3 закрывается, C4 заряжается, открывается Q3. Появляется питание зуммера, и он пищит, сигнализируя о присутствии обнаруженного металла.

Отметим, что это самозвучащий зуммер, устроенный подобно автомобильному звуковому сигналу. Принцип действия предельно прост. Электромагнит притягивает мембрану, которая разрывает цепь электромагнита. Ток в катушке прерывается, исчезает магнитное поле. Мембрана возвращается назад, снова касается контакта. Замыкается цепь, и всё повторяется заново.

▍ Сборка и испытание

Как работает этот игрушечный металлоискатель, а также состав набора и процесс сборки, можно посмотреть на видео.

Прибор, то пронзительно и противно орёт, то модулированно пищит, подобно пению птиц. Что высоко оценили все мои кошки, которых у меня много. При каждом эксперименте с металлоискателями они собирались вокруг, как будто происходит что-то величественное и очень интересное. Даже лазерная указка и кошачьи игрушки проигрывают по привлекательности для пушистых разбойников этому забавному устройству.

Металлоискатель действительно реагировал на все имеющиеся в моём распоряжении металлы, ферромагнетики, парамагнетики и диамагнетики, включая ртуть.

▍ Выводы

В очередной раз, набор удалось собрать без проблем, и устройство сразу заработало. Потому надо продолжать покупать и собирать радиоконструкторы. Потому что травить и сверлить платы всегда будет некогда.

Расскажите в комментариях о своём опыте постройки и применения металлоискателей, а также электронных музыкальных инструментов и радиоприёмников. Лично я в 1990-х годах построила примерно десяток приёмников, в том числе супергетеродинов и ламповых, и переделала несколько телевизоров, путём замены лампового ПТК на полупроводниковый селектор, что придавало аппарату удобство настройки и добавляло дециметровый диапазон. А электронная музыка и гитарные эффекты — моё сегодняшнее хобби.

И коль скоро речь зашла о металлоискателях, давайте не забывать, что поиски различных предметов на разных территориях регламентируются законами, а также могут привлечь нежелательное внимание лиц, эти законы нарушающих. Будем подходить к хобби честно и ответственно.

Спасибо за внимание! В следующий раз изучим и соберём ещё что-нибудь электронное.

Самодельный металлоискатель — OpenLearn

Обновлено 27 февраля 2007 г.

Группа ученых-любителей пытается сделать простейший металлоискатель.

Узнайте больше о научных курсах и квалификациях Открытого университета

Задание
Как сделать металлоискатель, который поможет найти золото!

Железо, золото и другие металлы
Металлы обычно блестящие, твердые и проводят электричество, некоторые из них также обладают магнитными свойствами. Хорошим тестом для металла является проверка того, проводит ли он электричество, но это не сильно помогает нам, когда он похоронен под землей! Если бы мы искали железо, мы могли бы каким-то образом модифицировать компас, но, к сожалению, поскольку золото не обладает магнитными свойствами, нам нужно найти какой-то другой способ его обнаружения.

Что такое металлоискатель?
Металлоискатель — это электронное устройство, состоящее из большой катушки провода, называемой поисковой катушкой (поисковая катушка — это круглый конец металлоискателя) и некоторой специальной электроники, позволяющей нам «услышать» наличие закопанных металл по изменению ноты из динамика металлоискателя.

Как это работает?
Электроника металлоискателя подает на поисковую катушку сигнал, заставляющий ее создавать вокруг себя электромагнитное поле (электромагнитное поле — это любое движущееся или изменяющееся электрическое или магнитное поле).

Электронное устройство, создающее электромагнитные поля, называется генератором (генератором называется электрическая цепь, способная очень быстро включаться и выключаться). Это невидимо, подобно силовым линиям магнитного поля вокруг магнита, но постоянно меняющимся.

Если поисковая катушка находится на земле, поле простирается наружу и вниз на глубину, примерно равную диаметру катушки. На поле влияют и изменяют близлежащие объекты. Изоляторы, такие как сухой камень, не очень сильно изменяют поле, но металлы, которые проводят электричество, вызывают усиление или ослабление поля.

Электроника также может определять, изменяется ли каким-либо образом поле, создаваемое катушкой. Если поисковая катушка натыкается на металл, электроника обнаруживает изменения в поле, производя соответствующее изменение в ноте из динамика. Это изменение в примечании говорит нам, что мы обнаружили погребенный металл.

Электромагнитное поле быстро меняется, возможно, со скоростью 100 000 раз в секунду — намного больше, чем может услышать ухо. Возможно, вы знаете, что два музыкальных инструмента можно настроить вместе, играя одну и ту же ноту, когда инструменты расположены близко друг к другу. Мы можем сделать то же самое в электронном виде с генераторами, используемыми в металлоискателе.

Мы можем смешать колебания поисковой катушки с другим встроенным генератором на той же частоте — в результате получится нота, которую мы слышим. При обычном использовании один осциллятор настраивается таким образом, чтобы металлоискатель издавал постоянную ноту. Если поисковая катушка проходит над землей с присутствующим металлом, она сдвинет частоту поисковой катушки, что приведет к изменению высоты тона ноты.

Как мы сделали детектор
Здание металлоискателя можно увидеть в трех секциях:

1. Два электронных устройства или осциллятора (один с поисковой катушкой)
2. Микшер — для объединения двух осцилляторов
3. Усилитель мощности для динамика.

Мы использовали три старых радиоприемника, чтобы получить электронные компоненты для металлоискателя. Один из радиоприемников работал, поэтому я использовал усилитель для питания динамика металлоискателя.

Электроника и схемы
Радио — это электронное устройство, состоящее из электронных компонентов, в том числе резисторов, конденсаторов, транзисторов, диодов и т. д. Компоненты соединены вместе в цепь с помощью проводов и пайки. В основе электроники лежат транзисторы. Транзистор можно использовать для усиления слабых сигналов в более крупные копии оригинала, а также для очень быстрого включения и выключения напряжения. Универсальные свойства транзисторов привели к тому, что они используются почти во всех электронных изобретениях, включая радиоприемники, компьютеры, мобильные телефоны, космические путешествия — они произвели революцию в нашем мире.

Как был изготовлен металлоискатель
Сначала была построена поисковая катушка. Был вырезан деревянный каркас диаметром 30 см. На первый было намотано около 20 витков изолированного провода и затем закреплено на деревянной ручке.

Мы решили разместить электронику в небольших пластиковых коробках, которые используются для хранения продуктов, и сделать их как можно более водонепроницаемыми. Аккумулятор разместили в одном ящике, а электронику встроили в другой. Запасное радио использовалось как усилитель динамика и крепилось к верхней части рукоятки.

Электроника металлоискателя была соединена вместе, чтобы сформировать правильную цепь с использованием проволоки и металлического припоя. Мы использовали пластиковый лист в качестве печатной платы, на которой крепились компоненты. Там, где должны были пройти провода компонентов, были просверлены отверстия, а затем концы компонентов были спаяны и соединены с помощью проволоки под самодельной платой, а затем помещены в водонепроницаемую коробку.

Электроника поисковой катушки — генератор — была построена с использованием транзистора и нескольких резисторов, конденсаторов и подключена к катушке. А 9Настроечный конденсатор 0008 (ручка настройки радио) был взят из списанного радиоприемника и подключен к катушке, чтобы можно было регулировать ее частоту. Затем был изготовлен второй осциллятор. Он был идентичен первому, но имел меньшую катушку вместо большой поисковой катушки. Поскольку катушка меньше и не находится близко к земле, на нее не влияет любой металл, зарытый в землю. Для этого использовалась катушка от списанного радиоприемника.

Затем была сделана «микшерная схема», которая электронным образом объединяет два сигнала генератора, чтобы мы могли обнаружить разницу между ними. Это генерирует сигнал, который мы в конечном итоге услышим (после того, как он будет усилен в каскаде усилителя) в динамике. Эта заметка изменится, когда мы столкнемся с закопанным металлом, и будет нашим индикатором от металлоискателя.

Наконец, мы подключили аккумулятор к радио и всем остальным схемам и убедились, что все различные этапы, т. е. блоки схемы, правильно подключены друг к другу. Все это было собрано и «зажжено» в прямом эфире на ТВ — и чудом заработало с первого раза!

Использование металлодетектора
Чтобы использовать металлоискатель, вы подключаете аккумулятор и регулируете громкость на усилителе динамика. Ручка на конденсаторе настройки поисковой катушки регулируется до тех пор, пока из динамика не будет слышна нота. Если поисковая катушка наткнется на металл, звуковой сигнал из динамика изменится, указывая на зарытый металл.

Как работают металлодетекторы — Объясните это Stuff

Бип-бип! Бип-бип! Есть ли что-нибудь более захватывающее, чем обнаружение сокровищ? Миллионы людей во всем мире имеют весело использовать металлоискатели, чтобы обнаружить ценные реликвии похоронены под землей. Точно такая же технология работает в нашей армии. и службы безопасности, помогая сохранять мир в безопасности, раскрывая ружья, ножи и закопанные мины. Металлоискатели основаны на наука об электромагнетизме. Давайте узнаем, как они работают!

Фото: Морской пехотинец США использует металлоискатель Garrett для поиска спрятанного оружия. Фото Тайлера Хилла предоставлено Корпусом морской пехоты США.

Содержание

  1. Когда магнетизм встретился с электричеством
  2. Как электромагнетизм питает металлоискатель
  3. Как работают металлодетекторы
  4. Какие существуют типы металлодетекторов?
  5. На какую глубину может проникнуть металлоискатель?
  6. Где используются металлодетекторы?
  7. Кто изобрел металлоискатели?
  8. А как насчет неметаллических детекторов ?
  9. Узнать больше

Когда магнетизм встретился с электричеством

Если вы когда-нибудь делали электромагнит, намотав катушку из проволоки вокруг гвоздя и подключив его к батарее, вы узнаете, что магнетизм и электричество подобны пожилая супружеская пара: когда бы вы ни нашли одного, вы всегда найдете другого, не очень далеко.

Мы находим практическое применение этой идее каждую минуту каждого дня. Каждый раз, когда мы используем электроприбор, мы полагаемся на близкое Связь между электричеством и магнетизмом. Электричество, которое мы используем поступает от электростанций (или, все чаще из возобновляемых источников как ветряные турбины) и это сделано генератор, который на самом деле просто большой барабан с медной проволокой. Когда провод вращается с большой скоростью через магнитное поле внутри него «волшебным образом» генерируется электричество — и мы можем использовать эту силу в наших собственных целях. Электрические приборы используем (во всем, от стирки машины к пылесосам) содержат электродвигатели, которые работают в точности противоположным образом. генераторы: по мере того, как электричество поступает в них, оно генерирует изменяющееся магнитное поле в катушке провода, которое давит на поле постоянный магнит, и это то, что заставляет двигатель вращаться. (Ты можешь найти подробнее об этом в нашей статье об электродвигателях. )

Фото: Гениальный физик Джеймс Клерк Максвелл. Фото из общественного достояния предоставлено Wikimedia Commons.

Короче говоря, вы можете использовать электричество для создания магнетизма и магнетизма производить электричество. Фантастически умный шотландский физик по имени Джеймс Клерк Максвелл (1831–1879) подытожил все это в 1860-х годах. когда он выписал четыре обманчиво простые математические формулы (теперь известные как уравнения Максвелла). Один из них говорит, что всякий раз, когда есть изменяющееся электрическое поле, вы также получаете изменяющееся магнитное поле. Другой говорит, что когда есть изменяющееся магнитное поле, вы получаете изменяющееся электрическое поле. На самом деле Максвелл говорил, что электричество и магнетизм — две части одного и того же: электромагнетизм. Зная это, мы можем точно понять, как металл детекторы Работа.

Фото: Этот усовершенствованный проходной детектор разработан в Тихоокеанской северо-западной национальной лаборатории использует визуализацию волн для обнаружения пластикового и керамического оружия. не улавливаются обычными металлоискателями. Фото предоставлено Министерством энергетики США.

Как электромагнетизм питает металлоискатель

Различные металлоискатели работают по-разному, но вот наука, стоящая за одним из более простых видов. Металлоискатель содержит моток проволоки (обернутый вокруг круглой головки на конце ручка), известная как передающая катушка. Когда электричество течет через вокруг катушки создается магнитное поле. Когда вы подметаете детектор над землей, вы заставляете магнитное поле двигаться вокруг слишком. Если вы перемещаете металлоискатель над металлическим объектом, движущийся магнитное поле воздействует на атомы внутри металл. На самом деле, это меняет то, как электроны (крошечные частицы «вращаются» вокруг эти атомы) движутся. Теперь, если у нас есть изменяющееся магнитное поле в металл, призрак Джеймса Клерка Максвелла говорит нам, что мы также должны иметь электрический ток движется туда же. Другими словами, металлоискатель. создает (или «индуцирует») некоторую электрическую активность в металле. Но затем Максвелл рассказывает нас интересует еще кое-что: если у нас есть электричество, движущееся в кусок металла, он также должен создавать некоторый магнетизм. Итак, когда вы перемещайте металлоискатель над куском металла, магнитное поле исходящий от детектора, вызывает появление другого магнитного поля вокруг металл.

Работа: Компактный металлоискатель в современном стиле был изобретен Чарльзом Гарреттом в начале 1970-х годов. Вы можете ясно видеть две катушки (которые я покрасил в красный и синий цвета). Коробка (оранжевая) в верхней части рукоятки (зеленая) содержит схему управления, включая батарею (не показана), громкоговоритель (24), переключатель громкости (27), регулятор чувствительности (28) и переключатель включения/выключения ( 29). Эта иллюстрация взята из патента США № 3 662 255 Чарльза Гаррета, выданного в 1972 г. с любезного разрешения Управления по патентам и товарным знакам США.

Детектор улавливает второе магнитное поле вокруг металла. Металлоискатель имеет вторую катушку провода в головке (известную как приемная катушка), которая подключена к цепи, содержащей громкоговоритель. Когда вы перемещаете детектор о над куском металла, магнитное поле, создаваемое металлом, прорезает катушку. В настоящее время если вы перемещаете кусок металла через магнитное поле, вы делаете через него течет электричество (помните, так работает генератор). Итак, когда вы перемещаете детектор по металлу, течет электрический ток. через катушку приемника, вызывая щелчок или звуковой сигнал громкоговорителя. Привет вуаля, металлоискатель сработал, и вы что-то нашли! Чем ближе вы перемещаете катушку передатчика к куску металла, тем сильнее магнитное поле, создаваемое в нем катушкой передатчика, тем сильнее магнитное поле, которое металл создает в приемной катушке, тем больше ток, который течет в громкоговоритель, и тем громче шум.

Итак, спасибо, Джеймс Клерк Максвелл, за то, что помог нам понять, как работают металлоискатели, используя электричество для создания магнетизма, который создает больше электричества где-то еще.

Какие существуют типы металлодетекторов?

Как мы видели выше, магнитные поля создаются изменяющимися электрическими полями, которые колеблются с определенной частотой. частота. Различные частоты дают лучшие или худшие результаты в зависимости от того, металл, который вы ищете, как глубоко в земле вы ищете, из какого материала сделана земля (песок или почва или что-то еще) и так далее.

Хотя все металлоискатели работают примерно одинаково, преобразовывая электричество в магнетизм и обратно. опять же, они бывают трех основных типов. Самые простые подходят для всех видов универсальных металлоискатель и кладоискатель. Они называются детекторами VLF (очень низкая частота) , потому что они используют единая фиксированная частота обнаружения обычно составляет около 6–20 кГц (обычно менее 30 кГц).

Фото: Этот складной миноискатель VLF (Vallon VMW1 армии США) можно использовать на суше или под водой на глубине до 30 м (100 футов). Фотография Кимберли Трамбулл предоставлена ​​армией США, опубликована на Викискладе.

Вы также встретите детекторы PI (импульсной индукции) , которые используют более высокие частоты и импульсные сигналы. Как правило, они могут улавливать предметы глубже в земле, чем детекторы ОНЧ, но они не так разборчивы и не так разборчивы. ничего подобного, как обычно используется. Третий тип известен как детектор FBS (полнополосный спектр) , который одновременно использует несколько частот, так что, по сути, это немного похоже на одновременное использование нескольких слегка по-разному настроенных детекторов.

Фото: Разминирование. Этот армейский миноискатель (CyTerra AN/PSS-14) сочетает в себе сверхчувствительный импульсный металлодетектор и георадар (GPR) в одном устройстве. портативный блок. Он может обнаруживать мины с низким содержанием металла и различать металл мины, нерелевантный металлический мусор и почву с высоким содержанием металла. Фотография предоставлена ​​армией США, опубликована на Flickr по лицензии Creative Commons (CC BY 2.0).

На какую глубину может проникнуть металлоискатель?

Точного ответа на этот вопрос, к сожалению, нет, потому что он зависит от всевозможных факторов, в том числе:

  • Размер, форма и тип закопанного металлического предмета: более крупные предметы легче обнаружить на глубине, чем мелкие.
  • Ориентация объекта: объекты, закопанные горизонтально, как правило, легче найти, чем те, которые закопаны концами вниз, отчасти потому, что это создает большую целевую область, а также потому, что это делает закопанный объект более эффективным при отправке сигнала обратно в детектор. .
  • Возраст объекта: вещи, которые долгое время были закопаны, с большей вероятностью окислились или подверглись коррозии, что затрудняет их поиск.
  • Природа почвы или песка, которые вы ищете.
  • Тип детектора и частота (или частоты), которые он использует.

Обычно металлоискатели работают на максимальной глубине около 20–50 см (8–20 дюймов).

Где используются металлодетекторы?

Металлоискатели используются не только для поиска монет на пляже. Ты их можно увидеть в проходных сканерах в аэропортах (предназначенных для остановки люди с оружием и ножами в самолеты или в другие безопасные местах, таких как тюрьмы и больницы) и во многих видах научных исследовательская работа. Археологи часто осуждают неподготовленных людей, использующих металл. детекторы для нарушения важных артефактов, но при правильном и С уважением, металлоискатели могут быть ценными инструментами в исторических исследованиях.

Фото: этот металлоискатель стержневого типа, называемый SuperScanner и изготовленный Garrett Metal Detectors, используется для проверки посетителей медицинской клиники в Афганистане. Он работает от встроенной 9-вольтовой батареи, которая обеспечивает около 60 часов непрерывной работы. Если вы найдете металл, детектор сообщит вам об этом комбинацией мигающих светодиодов и трели. Его длина составляет 42 см (16,5 дюйма), а вес — 500 г (17,6 унции). Такие детекторы стоят около 200 долларов (100 фунтов). Фото Кристофера Адмира предоставлено армией США.

Кто изобрел металлоискатели?

Металлоискатели, по-видимому, восходят к расстрелу президента США Джеймса А. Гарфилда в июле 1881 года. Одна из пуль, направленных в президента, застряла внутри его тела, и ее не удалось найти. Пионер телефонии Александр Грэм Белл быстро собрал электромагнитное устройство для обнаружения металла, названное индукционными весами, основанное на более раннем изобретении немецкого физика Генриха Вильгельма Дава. Хотя пуля не была найдена, а президент позже умер, устройство Белла работало правильно, и многие люди считают его самым первым электромагнитным локатором металла.

Рисунок: Слева: Найдите пулю! На этом зарисовке Уильяма А. Скинкла из иллюстрированной газеты Фрэнка Лесли от 20 августа 1881 г. показано довольно много врачей (!) использующих индукционные весы Белла, чтобы найти пулю, затерявшуюся в теле президента. В комнате слева находится оборудование на столешнице, которое помечено как «прерыватель», «конденсатор» и «батарея» (коробки в задней части стола). Вы можете просто разглядеть провода, которые тянутся от нижней части изображения к кровати президента справа. Предположительно Александр Грэм Белл — это бородатый мужчина, разговаривающий по телефону справа? С разрешения Библиотеки Конгресса США.

Портативные металлоискатели были изобретены немецким инженером-электронщиком Герхардом Фишером (которое он также произносил как «Фишер»), когда жил в Соединенных Штатах, и в январе 1933 года он подал заявку на патент на эту идею. Он назвал свое изобретение Металлоскоп. — «метод и средства для указания наличия закопанных металлов, таких как руда, трубы и т. п.» — и вы можете видеть это на рисунке здесь. В том же году он основал исследовательскую лабораторию Fisher, которая и по сей день остается ведущим производителем металлоискателей. Доктор Чарльз Л. Гарретт, основатель Garrett Electronics, первым изобрел современные электронные металлодетекторы в начале 19 века.70-е годы. После работы в НАСА над программой посадки на Луну «Аполлон» Гарретт обратил внимание на свое хобби — любительскую охоту за сокровищами — и его компания произвела революцию в этой области, представив ряд инноваций, в том числе первый компьютеризированный металлоискатель с цифровой обработкой сигнала, запатентованный в 1987 году.

Произведение: Металлоскоп, запатентованный Герхардом Фишером (Fisher) в 1937 году, который я раскрасил, чтобы за ним было легче следить. Катушка передатчика находится в красной рамке спереди; катушка приемника находится в синей коробке сзади. Передатчик использует неслышимые сигналы частотой 30 000 Гц; приемник посылает звуковые сигналы (с частотой около 500 Гц) в наушники, как в современном металлоискателе. Катушки передатчика и приемника установлены под прямым углом друг к другу, поэтому приемник не принимает сигналы непосредственно от передатчика. Работа предоставлена ​​Управлением по патентам и товарным знакам США.

А как насчет

неметаллических детекторов?

Охотники за сокровищами всегда будут ценить подобные металлоискатели, потому что исторически ценные вещи обычно делались из металла. Но в мире безопасности уже недостаточно полагаться на металлодетекторы как на нашу единственную линию. защита. Люди, которым нравится проносить оружие контрабандой через охрану, например, хорошо осведомлены что им придется пройти через металлоискатели, и они, вероятно, попробуют альтернативы, такие как керамика, ножи из пластика или углеродного волокна. Хотя уважаемые производители прилагают все усилия, чтобы обеспечить наличие мелких металлических деталей в рукояти «неметаллических» ножей, именно по этой причине ничто не мешает наточить кусок пластмассы до импровизируйте нож, как неоднократно делала полиция найденный. Как же тогда мы обнаруживаем неметаллические угрозы?

Одним из решений, принятых в аэропортах, является использование сканеров миллиметрового диапазона (MMS) для обнаружения металлических и неметаллических объектов. По сути, они работают как более безопасные версии рентгеновских аппаратов: волны проходят через одежду, но отражаются нашими телами, а любое спрятанное оружие (металлическое или иное) отображается в виде картинок на экране. Рентгеновские аппараты используют очень мощное излучение (с длиной волны примерно в нанометры или миллиардные доли метра), которое может быть опасным, если ваше тело поглощает слишком много излучения. Как следует из их названия, сканеры миллиметрового диапазона используют гораздо более длинные волны размером 1–10 мм (примерно в 10 раз меньше, чем микроволны, отправляемые и принимаемые мобильными телефонами), которые составляют значительно ниже по интенсивности, а значит и поза небольшой или нулевой риск для здоровья людей.

Узнайте больше

На этом сайте

  • Электричество
  • Магнетизм
  • Металлы
  • Рентгеновские лучи

На других веб-сайтах

  • Свод практических правил ответственного поиска металлов. Несмотря на то, что приведенные здесь разумные рекомендации написаны для Великобритании, они применимы в большей степени и в других странах, но обязательно узнайте о законах или правилах, применимых конкретно к вашей области. .
  • Обнаружение предметов, спрятанных на человеке или внутри тела: краткий обзор некоторых передовых технологий обнаружения, разработанных Национальным институтом юстиции США, включая радар миллиметрового диапазона (ммВт) и ультразвук.
  • Глава 3: Обнаружение металлов. Этот полезный (хотя и слегка устаревший) обзор 1999 года взят из отчета Министерства юстиции США «Надлежащее и эффективное использование технологий безопасности в школах США». -металлодетекторы и рентгеновские сканеры багажа. [Архивировано через Wayback Machine]

Книги

  • Библия металлоискателя: полезные советы, советы экспертов и секреты инсайдеров для поиска спрятанных сокровищ, Брэндон Нейс. Улисс Пресс, 2016.
  • Обнаружение металлов и археология Сьюзи Томас, Питер Стоун. Издательство Гринлайт, 2012.
  • Руководство для начинающих по поиску металлов Джулиана Эван-Харта и Дэйва Стаки. Издательство Гринлайт, 2012.
  • «Городской охотник за сокровищами: практическое руководство для начинающих» Майкла Чаплана. Square One Publishers, Inc., 2005.
  • Расширенный справочник по современным металлодетекторам Чарльза Гарретта. Ram Publishing, 1985. Старая книга, но достойная внимания, так как она написана самим Чарльзом Гарреттом.

Артикул

  • Металлодетекторы – норма в школах и на стадионах. Капитолии штатов? «Не так много» Алана Блиндера. The New York Times, 14 апреля 2018 г. Сканирование системы безопасности вовсе не так распространено, как вы думаете.
  • Радость поиска металла — это не только сокровище Дэйва Криспа. The Guardian, 29 августа., 2014. Металлоискатель связывает людей с прошлым, утверждает один энтузиаст.
  • Робот берется за обнаружение наземных мин, пока люди остаются очень-очень далеко, Эван Акерман. IEEE Spectrum, 23 января 2014 г. Краткий обзор робота, который может находить мины с помощью георадара и металлоискателя.
  • Археология и поиск металлов, Алекс Хант. BBC News, 17 февраля 2011 г. Могут ли профессиональные археологи и любители металлодетекторов работать бок о бок?
  • [PDF] Система обнаружения мин AN/PSS-14 предлагает улучшенные противоминные возможности, Келлин Д. Риттер, US Army AL&T, январь-март 2007 г. Интересная статья о разработке комбинированного металлодетектора AN/PSS-14 и георадара выше.

Патенты

Если вас интересуют технические подробности, ознакомьтесь со следующими патентами:

  • Патент США 2 066 561: Металлоскоп Герхарда Р.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *