Естественная вытяжка в частном доме: Как правильно сделать естественную вентиляцию в частном доме

правила обустройства гравитационной системы воздухообмена

В обустройстве загородных домов гравитационную вентиляцию нередко выбирают чаще, чем более эффективную и независимую, механическую. Проверенная временем естественная вентиляция в частном доме проще в реализации и значительно практичней. Она не требует особого ухода, не нуждается в обслуживании и электропитании.

Мы расскажем о том, как организовать воздухообмен, происходящий естественным образом. В представленной нами статье детально изложен принцип действия гравитационного вентилирования. Познакомим с устройствами, которые используют в сооружении систем, действующих без стороннего принуждения.

Содержание статьи:

  • Как устроен процесс воздухообмена?
  • Составляющие гравитационного воздухообмена
    • Оконный приточный клапан
    • Стеновое вытяжное или приточное устройство
    • Межкомнатные переточные решетки
  • Специфика канальной вытяжки
    • Виды вентиляционных каналов
    • Что такое дефлектор?
  • Основные правила и рекомендации
  • Преимущества и недостатки естественного воздухообмена
  • Выводы и полезное видео по теме

Как устроен процесс воздухообмена?

Основное назначение гравитационного варианта устройства воздухообмена: поддержание необходимого микроклимата. Кроме насыщения пространства свежим воздухом, она еще и выполняет удаление отработанного воздуха, продуктов горения газа, различных запахов.

Эффективность работы системы естественной вентиляции, устроенной в загородном доме или на даче, обусловлена разницей атмосферного давления внутри и снаружи дома, которое также зависит от температуры, влажности воздуха и силы ветра.

Естественная вентиляция должна обеспечивать равномерную поставку, движение внутри и отвод воздушных потоков, независимо от этажности дома

Естественный воздухообмен работает следующим образом:

  • Воздух с улицы попадает в дом через открытые фрамуги, неплотно прилегающие друг к дружке элементы оконных и дверных конструкций. Потоки воздуха устремляются внутрь в ходе проветривания через приоткрытые пластиковые окна или через вентиляционные приточные клапаны.
  • Перемещение воздуха от одного помещения к другому и внутри него происходит самопроизвольно. Чтобы у потока не было препятствий между полом и дверьми оставляют зазоры. Их функцию с успехом выполняют переточные решетки, устанавливаемые в стены.
  • Отработанный воздух покидает дом через вытяжные вентиляционные каналы. Находятся они в помещениях с нестабильной влажностью/температурой — в кухнях, раздельных и совмещенных санузлах.

С вытяжными компонентами отлично знакомы все городские жители. Это каналы, соединенные с общественной вентиляционной шахтой. Их закрывают решетками, которые требуется периодически чистить.

В обустройстве частного дома может существенно различаться. К примеру, это может быть отдушина в верхней части стены, вытяжная труба или отверстие в потолке с выходом в вентиляционный канал на чердак, а оттуда на улицу.

Составляющие гравитационного воздухообмена

Одной из распространенных проблем устройства естественной вентиляции в частном доме является недостаток поступления свежего воздуха в помещение. Гравитационное вентилирование безупречно действует только тогда, когда плотность воздушной массы за окном значительно выше, чем внутри помещений. Летом, когда их плотность уравнивается, воздух с улицы сам не течет.

К тому же на пути естественно перемещающихся воздушных потоков теперь устанавливают серьезные препятствия. Уплотнители окон и дверей, предложенных в наши дни потребителю, отлично сопротивляются утечкам тепла, но и воздух они не пускают снаружи.

Для того чтобы обеспечить естественный приток в домах с герметичными окнами, стоит поставить приточные клапаны в стену, а вытяжные вентиляционные трубы снабдить дефлекторами

Вопрос поступления свежего воздуха в помещения с практически герметичными окнами и дверьми решается путем установки . Если не хочется устанавливать клапаны, придется приобретать приточные устройства на пластиковые окна или покупать оконные пакеты с вмонтированными в них изначально приточниками.

Оконный приточный клапан

Это устройство называется также оконным проветривателем. Относится к самым распространенным вариантам решения проблемы воздухообмена. Конструкция такого клапана монтируется непосредственно в оконный профиль.

Поток поступающего воздуха через оконный проветриватель направлен вверх, чтобы холодный приточный воздух эффективней перемешивался с уже нагретым внутри помещения и не доставлял дискомфорт жителям

Некоторые клапаны оборудованы автоматической регулировкой притока воздуха. Стоит заметить, что механической регулировкой производители оснащают не все модели проветривателей. Это может создать определенные проблемы при резких перепадах температур.

Основным недостатком является относительно невысокая производительность. Его пропускная способность ограничена размерами профиля.

Стеновое вытяжное или приточное устройство

Для установки стенового проветривателя требуется сделать сквозное отверстие в стене. Производительность такого клапана обычно выше чем оконного. Как и в случае оконного приточника, поступающий объем свежего воздуха контролируются как вручную, так и автоматикой.

Стеновые вытяжные клапаны обычно располагают в верхней части стены, там, куда естественным образом поднимается отработанный воздух. в стену чаще всего монтируют между окном и радиатором. Делают так для того, чтобы поступающий холодный воздух заодно еще и нагревался.

Если стеновой вентиляционный клапан установить прямо над радиатором, то поток свеженго воздуха будет самопроизвольно нагреваться перед поставкой его в помещение

Преимущества установки приточного клапана перед обычным проветриванием:

  • Возможность регулировать приток свежего воздуха;
  • Способность пропускать значительно меньше уличного шума;
  • Наличие фильтров разной степени очистки воздуха.

Конструкция стенового приточного и не позволяет проникнуть влаге внутрь помещения. Многие модели этих устройство местной вентиляции часто включают в себя фильтры для очистки воздуха.

Межкомнатные переточные решетки

Для того чтобы свежий воздух мог беспрепятственно проникать во все части дома, нужны переточные компоненты. Они позволяют потокам воздуха свободно течь от притока к вытяжке, захватив с собой взвешенную в воздушной массе пыль, шерсть животных, углекислый газ, неприятные запахи, бытовые испарения и подобные включения.

Переток осуществляется через открытые дверные проемы. Однако он не должен прекращаться и в случае, если межкомнатные двери закрыты. Для этого между полом и полотном межкомнатных дверей оставляют зазор в 1,5-2,0 см.

Для того чтобы свежий воздух мог свободно двигаться к вытяжке и омывать все помещения, в дверные полотна устанавливают переточные решетки. Если их нет, то между плоскостью пола и полотном оставляют зазор до 2 см

Также для этих целей используются переточные решетки, монтируемые в дверь или стену. Конструкция таких решеток состоит из двух рамок с жалюзи. Изготавливаются они из пластика, металла или дерева.

Специфика канальной вытяжки

Отработанный воздух покидает дом через отдушины, вентиляционные шахты или воздуховоды. Вентиляционные каналы обычно выводятся на чердак или подсоединяют к расположенной в центре дома вентиляционной шахте.

Вентиляционные каналы в устройстве и организации естественной вентиляции частного дома используют преимущественно при устройстве вытяжной части системы. Естественный приток по воздуховодам чаще всего невозможен или малоэффективен. Чтобы он хоть как-то работал, пришлось бы монтировать канальный вентилятор.

В схемах естественного вентилирования каналами обеспечивают вытяжную часть системы. Вытяжные воздуховоды в частных домах нередко объединяют в шахты

К вытяжке гравитационного вентилирования воздушные массы подталкивают свежие порции воздуха, затянутые через форточку, приточник ПВХ окна или открытую входную дверь. Сечение воздуховодов выбирают с учетом нормативов воздухообмена для отдельных типов помещений, которые приведены в сборнике СНиП 41-01-2003.

Кроме жилых и подсобных помещений в частном доме системами вентилирования требуется обеспечить подвал и сооруженное в нем хранилище, фундамент без подвала, холодный чердак или обустроенную мансарду. В естественных схемах они обеспечиваются продухами, фронтонными и слуховыми окнами.

Виды вентиляционных каналов

По расположению различают:

  • Встроенные. Сооружают из пустотелых бетонных или керамических блоков, кирпича. Такие вытяжные каналы обычно возводят еще на этапе строительства.
  • Подвесные. Выполненные из оцинкованной стали или армированного пластика. Обустроить подвесные каналы довольно легко, даже после того, как дом уже построен.

Воздуховоды разделяют на круглую и прямоугольную форму сечения. У каждого типа свои преимущества:

  • Круглый воздуховод. Легкий монтаж, лучший воздухообмен, меньший вес;
  • Прямоугольный воздуховод. Занимает меньшее пространство, легче маскируется коробами, фальшь потолками и стенами.

В свою очередь, трубы для круглого воздуховода бывают жесткими и гибкими, т.е. гофрированными.

Гофрированные вентиляционные трубы проще в укладке, но их монтаж возможен только по горизонтальным поверхностям и на небольших участках вертикальных стен

По жестким трубам воздух перемещается без каких-либо препятствий, поэтому они обеспечивают наименьшее сопротивление и минимальный шум. Однако с помощью быстрей и легче осуществить монтаж.

Что такое дефлектор?

Дефлектор — это специальный колпак, который устанавливается на устье вытяжной трубы системы вентилирования. Он рассекает поток ветра, за счет чего образуется зона низкого давления, при этом сила тяги может увеличиться до 20%.

Также исключает попадание атмосферной воды в вентиляционную систему и предотвращает задувание ветра в вентиляционный канал.

Дефлектор устанавливают на устье вытяжной трубы. Это устройство выполняет две важные функции: усиливает тягу + защищает от атмосферных осадков

Существуют следующие типы дефлекторов:

  • Цилиндрический или зонт Волпера. Представляет из себя изогнутый цилиндр, прикрытый тарелкой. Обладает средней эффективностью, хорошо защищает вентиляционные каналы от задувания ветра;
  • Н-образный дефлектор. Корпус изготавливается из труб в виде буквы H. Отличается повышенной защитой от задувания ветра, попадания в канал влаги и обратной тяги, но из-за особенностей конструкции имеет невысокую производительность;
  • Дефлектор типа ЦАГИ. Конструкция включает в себя стакан с расширением на конце, крышку-зонт и цилиндрическую обечайку. Признан одним из самых эффективных. Хорошо защищает от ветра, снегопадов, дождей, имеет наименьший коэффициент сопротивления;
  • Турбодефлектор. Представляет из себя вращающийся шар с лопастями, отличается повышенной эффективностью, но стоит обычно несколько дороже;
  • Флюгер. Напоминает крыло. Принцип действия схож с турбодефлектором.

Выбор модели дефлектора зависит от местных условий. В регионах с высокой ветровой нагрузкой предпочитают обычные грибки. В областях с низкой активностью ветра лучше поставить дефлектор с турбиной, он обеспечит тягу даже при легком дуновении.

Основные правила и рекомендации

Нормативные данные об объеме воздухообмена приведены в СП 44.13330.2011, СП 66.13330.2012 и уже указанном выше СНиП 41-01-2003.

Естественная система вентилирования должна обеспечивать:

  • В основных помещениях, таких как гостиная, спальни, детские комнаты, величина воздухообмена на каждого человека должна составлять не менее 30 м3/ч;
  • Для кухни постоянный воздухообмен по правилам составляет 100 м3/ч. Из них на обслуживание электроплиты — 60 м3/ч, на 1 конфорку газовой варочной плиты — 80 м3/ч;
  • В душевой и ванной постоянный воздухообмен должен быть менее 75 м3/ч;
  • В туалетах с одним унитазом 50 м3/ч, если установлено биде, то его надо увеличить на 25 м3/ч. В совмещенных санузлах нормы на каждый сантехнический прибор суммируются;
  • В кладовой и гардеробной постоянный воздухообмен равен 10 м3/ч, та же цифра и в режиме обслуживания.

Если естественная система не справляется с нормативным воздухообменом, на приток или вытяжку ставят вентиляторы.

Нормативные данные о воздухообмене нужны для расчетов производительности приточников и диаметра вытяжных каналов

Трубы для устройства вентиляционных каналов желательно подбирать одного диаметра. Все элементы воздуховода должны быть закреплены ровно и надежно. Чем меньше поворотов вентиляционных каналов, тем выше эффективность вентиляционной системы.

Приточные отверстия естественной системы должны располагаться не выше 1,5 м от уровня земли, чтобы была возможность их очищать и обслуживать.

Чем длинней и шире воздуховод, тем сильней тяга. Рассчитать необходимые размеры воздуховода можно, воспользовавшись одним из онлайн-калькуляторов.

Преимущества и недостатки естественного воздухообмена

Как и любая инженерно-техническая система естественная разновидность не лишена недостатков, но и обладает вескими преимуществами. Чтобы наверняка определиться, устраивать ее или нет, стоит сравнить список плюсов с перечнем минусов.

Положительные стороны:

  • Лёгкая и недорогая установка. Это самый дешевый вариант организации стабильного воздухообмена.
  • Низкие расходы на обслуживание. Если в системе нет механических приборов, то она нуждается всего-лишь в периодической чистке.
  • Энергонезависимость. Не потребляет электроэнергию, за исключением установки дополнительных электроприборов.
  • Предельно тихая работа. Отличается пониженным шумом.
  • Инженерная гибкость. Вентиляцию можно модернизировать, доукомплектовать различными устройствами. Есть возможность регулировки производительности системы.

Отрицательные стороны:

  • Нестабильность тяги. Ее зависимость от атмосферного давления и конкретных погодных условий. Эффективность работы естественной вентиляции летом может быть недостаточной.
  • Формирование сквозняков. В зимний период сильная тяга может не только доставить жителям дома дискомфорт сквозняками, но и существенно увеличить теплопотери. Отсюда вытекают повышенные расходы на отопление помещения. Стоит отметить, что существуют различные пути решения этой проблемы.

Организовать систему естественной вентиляции в частном доме под силу каждому. Ее несовершенство компенсируется простотой конструкции и минимальными расходами на обслуживание.

Выводы и полезное видео по теме

Со спецификой устройства системы воздухообмена по естественной схеме ознакомит следующий ролик:

Нормальный воздухообмен благоприятно сказывается на здоровье человека, повышает работоспособность мозга, противодействует возникновению симптомов вялости, слабости и сонного состояния, а также препятствует появлению в доме сырости, грибка и плесени.

Хотите рассказать о том, как устраивали систему вентилирования собственного дома или дачи? Есть желание поделиться полезной информацией по теме статьи? Оставляйте, пожалуйста, комментарии в расположенной ниже блок-форме, размещайте фотоснимки и задавайте вопросы.

Естественная вентиляция в частном доме

Главная

Статьи

Естественная вентиляция в частном доме

Естественная вентиляция – это поток свежего воздуха без применения приборов. Самый простой пример такой вентиляции – открытое окно или дверь. Система природной вентиляции посложнее требует специальных расчётов, однако множество плюсов стоит затраченных усилий.

Преимущества естественной вентиляции

Натуральная циркуляция воздуха есть в каждом помещении. Здания строят, учитывая возможность проветривания и постоянного потока воздуха снаружи. Если же природной циркуляции недостаточно, то в помощь приходят приборы, побуждающие неприятный запах покинуть помещение.

Естественная вентиляция в доме имеет ряд плюсов, среди которых:

  • Экономичность
  • Простота в применении
  • Эффективность
  • Легкость монтажа

Такая система проветривания не требует больших затрат. Для её работы не нужно покупать вентиляторы или другие приборы – достаточно правильно провести расчёты и установить воздуховоды.

Осуществляется циркуляция воздуха благодаря разнице температур и давления атмосферы внутри и снаружи помещения. Именно по этому принципу и строят воздуховоды. В местах скопления неприятного запаха или повышения температуры устанавливают вентиляционную шахту. Эффективно сделать это возле кухни и санузла. Тогда естественная вытяжная вентиляция будет хорошо работать, благодаря резким перепадам температур и давления.

Для результативной работы всей системы нужно произвести монтаж воздуховодов. Сделать это лучше с помощью профессионалов, которые смогут точно выстроить все расчеты.

Виды естественной вентиляции

Естественная система вентиляции разделяется на два вида:

  • Самопроизвольная циркуляция.
  • Организованная вентиляция.

Самопроизвольная циркуляция воздуха происходит за счёт щелей и отверстий в здании. Это отсутствие герметичности в проёме дверей и окон, зазоры в строительном материале и т. д. Осуществляется такая вентиляция только за счёт силы ветра и перепада температур.

Организованная вентиляция предусматривает специальные отверстия на разной высоте и разной площади. Благодаря им регулируется подача свежего воздуха в помещение.

Нюансы естественной вентиляции

Для правильной организации природной вентиляции нужны расчёты. Например, если не учесть особенность строительного материала, то естественная вентиляция в частном доме будет малоэффективна. Стоит помнить, что дерево пропускает воздух благодаря порам, чего нельзя сказать о кирпиче или каркасе. Потому природный воздухообмен происходит только благодаря специальным дырам и форточкам.

Перед монтажом вентиляции следует определить нужную производительность будущей системы. Для этого существуют специальные нормы, следуя которым производится расчёт необходимых отверстий.

Правильно спроектированная естественная вентиляция справится с циркуляцией воздуха без дополнительных приборов. Но при неточностях недостаточный воздухообмен чреват отрицательными результатами, включая застой воздуха, повышение влажности, образование грибка и плесени.

 

Получить консультацию специалистов можно по телефону 8 (812) 385-50-60,
и по электронной почте: [email protected]

Отправить сообщение

Факторы, влияющие на использование вытяжки в калифорнийских домах и квартирах с низким доходом

1. Уоллес Л., Ван Ф., Ховард-Рид С., Персили А. Вклад газовых и электрических плит в концентрацию ультрадисперсных частиц в жилых помещениях от 2 до 64 нм: Распределение размеров и эмиссия и ремиссия коагуляции и скорость коагуляции. Окружающая среда. науч. Технол. 2008; 42:8641–8647. doi: 10.1021/es801402v. [PubMed] [CrossRef] [Google Scholar]

2. Dennekamp M. Ультратонкие частицы и оксиды азота, образующиеся при приготовлении пищи на газу и электричестве. Занять. Окружающая среда. Мед. 2001; 58: 511–516. doi: 10.1136/oem.58.8.511. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

3. Мошандреас Д.Дж., Релвани С.М. Полевые измерения интенсивности выброса газа NO2 горелками в верхней части диапазона. Окружающая среда. Междунар. 1989; 15: 489–492. doi: 10.1016/0160-4120(89)

-4. [CrossRef] [Google Scholar]

4. Wallace L.A., Emmerich S.J., Howard-Reed C. Сила источника ультрадисперсных и мелких частиц при приготовлении пищи на газовой плите. Окружающая среда. науч. Технол. 2004; 38: 2304–2311. doi: 10.1021/es0306260. [PubMed] [CrossRef] [Google Scholar]

5. Маллен Н.А., Ли Дж., Рассел М.Л., Спирс М., Лесс Б.Д., Сингер Б.К. Результаты исследования качества воздуха в помещениях Healthy Homes в Калифорнии за 2011–2013 годы: влияние приборов, работающих на природном газе, на концентрацию загрязнителей воздуха. Воздух в помещении. 2016; 26: 231–245. дои: 10.1111/ina.12190. [PubMed] [CrossRef] [Google Scholar]

6. Лесс Б., Маллен Н., Сингер Б., Уокер И. Качество воздуха в помещении в 24 калифорнийских резиденциях, спроектированных как дома с высокими эксплуатационными характеристиками. науч. Технол. Построенная среда. 2015;21:14–24. doi: 10.1080/10789669.2014.961850. [CrossRef] [Google Scholar]

7. Сингер Б.К., Апте М.Г., Блэк Д.Р., Хотчи Т., Лукас Д., Лунден М.М., Мирер А.Г., Спирс М., Салливан Д.П. Изменчивость природного газа в Калифорнии: воздействие на окружающую среду и производительность устройств: экспериментальная оценка выбросов загрязняющих веществ из бытовых приборов. Калифорнийская энергетическая комиссия; Сакраменто, Калифорния, США: 2010. [Google Scholar]

8. Лог Дж.М., Клепеис Н.Е., Лобшайд А.Б., Сингер Б.К. Воздействие загрязняющих веществ от горелок для приготовления пищи на природном газе: оценка на основе моделирования для Южной Калифорнии. Окружающая среда. Перспектива здоровья. 2014; 122:43–50. doi: 10.1289/ehp.1306673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Сингер Б.К., Пасс Р.З., Делп В.В., Лоренцетти Д.М., Маддалена Р.Л. девять калифорнийских домов. Строить. Окружающая среда. 2017;122:215–229. doi: 10.1016/j.buildenv.2017.06.021. [CrossRef] [Google Scholar]

10. Белэнджер К., Холфорд Т.Р., Гент Дж.Ф., Хилл М.Е., Кезик Дж.М., Лидерер Б.П. Бытовые уровни диоксида азота и тяжесть детской астмы. Эпидемиология. 2013;24:320–330. doi: 10.1097/EDE.0b013e318280e2ac. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

11. Lin W.W., Brunekreef B., Gehring U. Метаанализ воздействия двуокиси азота в помещении и приготовления пищи на газе на астму и хрипы у детей. Междунар. Дж. Эпидемиол. 2013;42:1724–1737. дои: 10.1093/ije/dyt150. [PubMed] [CrossRef] [Google Scholar]

12. Абдуллахи К.Л., Дельгадо-Саборит Дж.М., Харрисон Р.М. Выбросы и концентрации твердых частиц и их конкретных химических компонентов в результате приготовления пищи: обзор. Атмос. Окружающая среда. 2013;71:260–294. doi: 10.1016/j.atmosenv.2013.01.061. [CrossRef] [Google Scholar]

13. Буонанно Г., Моравска Л., Стабиле Л. Коэффициенты выбросов частиц при приготовлении пищи. Атмос. Окружающая среда. 2009;43:3235–3242. doi: 10.1016/j.atmosenv.2009.03.044. [CrossRef] [Google Scholar]

14. Фортманн Р., Карихер П., Клейтон Р. Качество воздуха в помещении: кулинарные воздействия в жилых помещениях. Подготовлено для Калифорнийского совета по воздушным ресурсам; Сакраменто, Калифорния, США: 2001. [Google Scholar]

15. Фуллана А., Карбонелл-Баррачина А.А., Сидху С. Выбросы летучих альдегидов из нагретых кулинарных масел. J. Sci. Фуд Агрик. 2004;84:2015–2021. doi: 10.1002/jsfa.1904. [CrossRef] [Google Scholar]

16. Симэн В.Ю., Беннетт Д.Х., Кэхилл Т.М. Выбросы акролеина в помещении и скорость распада в результате приготовления пищи в домашних условиях. Атмос. Окружающая среда. 2009 г.;43:6199–6204. doi: 10.1016/j.atmosenv.2009.08.043. [CrossRef] [Google Scholar]

17. Zhang Q.F., Gangupomu R.H., Ramirez D., Zhu Y.F. Измерение ультрадисперсных частиц и других загрязнителей воздуха, выделяемых при приготовлении пищи. Междунар. Дж. Окружающая среда. Рез. Здравоохранение. 2010;7:1744–1759. doi: 10.3390/ijerph7041744. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

18. Чжао Ю.Дж., Чжао Б. Выбросы загрязняющих веществ в атмосферу при приготовлении пищи в Китае: обзор литературы. Строить. Симул. 2018;11:977–995. doi: 10.1007/s12273-018-0456-6. [CrossRef] [Google Scholar]

19. Торкмахалле М.А., Горжинежад С., Унлуевчек Х.С., Хопке П.К. Обзор факторов, влияющих на выбросы/концентрацию твердых частиц, образующихся при приготовлении пищи. науч. Общая окружающая среда. 2017; 586:1046–1056. doi: 10.1016/j.scitotenv.2017.02.088. [PubMed] [CrossRef] [Google Scholar]

20. Chen W., Wang P., Zhang D., Liu J., Dai X. Влияние воды на выбросы частиц из нагретого растительного масла. Аэрозоль Эйр Квал. Рез. 2020; 20: 533–543. дои: 10.4209/aaqr.2019.09.0427. [CrossRef] [Google Scholar]

21. Агентство по охране окружающей среды США. Заключительный отчет: Комплексная научная оценка твердых частиц. Агентство по охране окружающей среды США; Вашингтон, округ Колумбия, США: 2009. [Google Scholar]

22. Ю. И. Т. С., Чиу Ю. Л., Ау Дж. С. К., Вонг Т. В., Тан Дж. Л. Зависимость доза-реакция между воздействием кухонного дыма и раком легких у некурящих китайских женщин. Рак рез. 2006; 66: 4961–4967. doi: 10.1158/0008-5472.CAN-05-2932. [PubMed] [CrossRef] [Академия Google]

23. Лю С., Дун Дж., Цао Ц., Чжоу С., Ли Дж., Линь С., Цин К., Чжан В., Чен К. Тепловая среда и качество воздуха в жилых помещениях в китайском стиле кухни. Воздух в помещении. 2020;30:198–212. doi: 10.1111/ina.12631. [PubMed] [CrossRef] [Google Scholar]

24. Delp W.W., Singer B.C. Оценка эффективности кухонных вытяжек в жилых домах США. Окружающая среда. науч. Технол. 2012;46:6167–6173. doi: 10.1021/es3001079. [PubMed] [CrossRef] [Google Scholar]

25. Рим Д., Уоллес Л., Набингер С., Персили А. Уменьшение воздействия ультрадисперсных частиц кухонными вытяжными шкафами: влияние скорости потока выхлопных газов, размера частиц, и положение горелки. науч. Общая окружающая среда. 2012; 432:350–356. doi: 10.1016/j.scitotenv.2012.06.015. [PubMed] [CrossRef] [Академия Google]

26. Сингер Б.К., Делп В.В., Прайс П.Н., Апте М.Г. Производительность установленных варочных вытяжных устройств. Воздух в помещении. 2012; 22: 224–234. doi: 10.1111/j.1600-0668.2011.00756.x. [PubMed] [CrossRef] [Google Scholar]

27. Лунден М.М., Делп В.В., Сингер Б.К. Эффективность улавливания мелких и ультрадисперсных частиц, связанных с приготовлением пищи, с помощью вытяжных шкафов в жилых помещениях. Воздух в помещении. 2015;25:45–58. doi: 10.1111/ina.12118. [PubMed] [CrossRef] [Google Scholar]

28. Чжао Ю., Чжао Б. Снижение воздействия на человека PM2,5, образующихся при приготовлении типичных блюд китайской кухни. Строить. Окружающая среда. 2020;168:106522. doi: 10.1016/j.buildenv.2019.106522. [CrossRef] [Google Scholar]

29. Доббин Н.А., Сан Л., Уоллес Л., Кулка Р., Ю Х.Ю., Шин Т., Обен Д., Сен-Жан М., Сингер Б.К. Польза от использования кухонного вытяжного вентилятора после приготовления пищи – экспериментальная оценка. Строить. Окружающая среда. 2018; 135: 286–296. doi: 10.1016/j.buildenv.2018.02.039. [CrossRef] [Google Scholar]

30. О’Лири К., де Клуизенаар Ю., Джейкобс П., Борсбум В., Холл И., Джонс Б. Исследование измерений выбросов мелких частиц (PM2,5) из приготовление пищи и смягчение воздействия с помощью вытяжки. Воздух в помещении. 2019;29:423–438. doi: 10.1111/ina.12542. [PubMed] [CrossRef] [Google Scholar]

31. Исследование энергопотребления в жилых помещениях Управления энергетической информации США (RECS) [(по состоянию на 17 июля 2020 г. )]; Доступно в Интернете: https://www.eia.gov/consumment/ Residential/index.php

32. Исследование насыщения бытовыми приборами Комиссии по энергетике Калифорнии. [(по состоянию на 17 июля 2020 г.)]; 2019 г. Доступно в Интернете: https://www.energy.ca.gov/data-reports/surveys/2019-residental-appliance-saturation-study

33. Bradman A., Chevrier J., Tager I., Lipsett M., Sedgwick J., Macher J., Vargas A.B., Cabrera E.B., Camacho J.M., Weldon R., et al. Ассоциация показателей ветхости жилья с заражением тараканами и грызунами в когорте беременных латиноамериканок и их детей. Окружающая среда. Перспектива здоровья. 2005; 113:1795–1801. doi: 10.1289/ehp.7588. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

34. Пьяцца Т., Ли Р., Шерман М., Прайс П. Изучение методов вентиляции и характеристик домохозяйств в домах Новой Калифорнии. Заключительный отчет по контракту Энергетической комиссии 500-02-023 и контракту АРБ 03-026. Калифорнийская энергетическая комиссия и Калифорнийский совет по воздушным ресурсам; Сакраменто, Калифорния, США: 2007. [Google Scholar]

35. Чан В.Р., Ким Ю.-С., Лесс Б.Д., Сингер Б.К., Уокер И.С. Вентиляция и качество воздуха в помещениях в домах в Новой Калифорнии с газовыми приборами и механической вентиляцией. Национальная лаборатория Лоуренса Беркли; Беркли, Калифорния, США: 2019. [Google Scholar]

36. ANSI/ASHRAE. Вентиляция и качество воздуха в жилых помещениях СН 62.2-2019. АШРАЭ; Атланта, Джорджия, США: 2019. [Google Scholar]

37. Energy Star . Программные требования к бытовым вентиляторам. Агентство по охране окружающей среды США; Вашингтон, округ Колумбия, США: 2018. [Google Scholar]

38. Совет по международному кодексу. Международный механический кодекс. Международный совет по кодексам, Inc.; Country Club Hills, IL, USA: 2017. [Google Scholar]

39. International Code Council. Международный кодекс энергосбережения. Международный совет по кодексам, Inc.; Country Club Hills, IL, USA: 2017. [Google Scholar]

40. Калифорнийская энергетическая комиссия. Стандарты энергоэффективности зданий. Калифорнийская энергетическая комиссия; Сакраменто, Калифорния, США: 2008. [Google Scholar]

41. Холм С.М., Бальмес Дж., Джиллетт Д., Хартин К., Сето Э., Линдеман Д., Поланко Д., Фонг Э. Поведение при приготовлении пищи связано с воздействием твердых частиц в домашних условиях у детей с астмой в городских условиях. Район Восточного залива в Северной Калифорнии. ПЛОС ОДИН. 2018;13:e0197199. doi: 10.1371/journal.pone.0197199. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

42. Клуг В.Л., Сингер Б.К., Бедросян Т., Д’Круз К. Характеристики вытяжек в калифорнийских домах – данные, собранные с веб-сайта по недвижимости ЛБНЛ-5067Е. Berkeleyca Lawrence Berkeley National Lab; Калифорния, Калифорния, США: 2011. [Google Scholar]

43. Лю С., Уоллес Л. Приготовление пищи и кухонная вентиляция в жилых помещениях и влияние на воздействие. JAWMA Rev. 2020 doi: 10.1111/ina.12676. [CrossRef] [Google Scholar]

44. Сингер Б. К., Чан В.Р., Ким Ю.-С., Офферманн Ф.Дж., Уокер И.С. Качество воздуха внутри помещений в калифорнийских домах с механической вентиляцией, требуемой кодом. Воздух в помещении. 2020 г.: 10.1111/ina.12676. [PubMed] [CrossRef] [Google Scholar]

45. Chan W., Kim Y.-S., Delp W., Walker I., Singer B. Данные из: Качество воздуха в помещении в калифорнийских домах с требуемым кодом механическим вентиляция. Дриада. Дои 2020 г.: 10,7941/D1ZS7X. [PubMed] [CrossRef] [Google Scholar]

46. Чжао Х., Чан В., Кон С., Делп В.В., Уокер И.С., Сингер Б.К. Качество воздуха внутри помещений в новых и отремонтированных квартирах для малоимущих с механической вентиляцией и приготовлением пищи на природном газе в Калифорнии. Дриада. 2020 г.: 10.1111/ina.12764. [PubMed] [CrossRef] [Google Scholar]

47. Zhao H., Chan W.R., Cohn S., Delp W.W., Walker I.S., Singer B.C. Качество воздуха внутри помещений в новых и отремонтированных квартирах для малоимущих с механической вентиляцией и приготовлением пищи на природном газе в Калифорнии. Воздух в помещении. 2020 г.: 10.1111/ina.12764. [PubMed] [CrossRef] [Академия Google]

48. Танг Х., Чан В.Р., Сон М. Автоматизация интерпретации измерений PM 2.5 с временным разрешением с использованием подхода, основанного на данных. Воздух в помещении согласно версии 2019; 12:69. [Google Scholar]

49. Chan W.R., Logue J.M., Wu X., Klepeis N.E., Fisk W.J., Noris F., Singer B.C. Количественная оценка выбросов мелких частиц на основе измерений с временным разрешением: описание метода и его применение в 18 квартирах с низким доходом в Калифорнии. Воздух в помещении. 2018;28:89–101. doi: 10.1111/ina.12425. [PubMed] [CrossRef] [Академия Google]

50. Ван З., Делп В.В., Сингер Б.К. Производительность недорогих мониторов качества воздуха в помещении на наличие PM2,5 и PM10 из бытовых источников. Строить. Окружающая среда. 2020;171:106654. doi: 10.1016/j.buildenv.2020.106654. [CrossRef] [Google Scholar]

51. Singer B.C., Delp W.W. Реакция мониторов качества воздуха в помещениях потребительского и исследовательского класса на жилые источники мелких частиц. Воздух в помещении. 2018; 28: 624–639. doi: 10.1111/ina.12463. [PubMed] [CrossRef] [Google Scholar]

Энергетическое воздействие эффективного использования вытяжки для всех жилых домов в США (Технический отчет)

Энергетическое воздействие эффективного использования вытяжных вытяжек для приготовления пищи в жилых домах США (технический отчет) | ОСТИ.GOV

перейти к основному содержанию

  • Полная запись
  • Другие родственные исследования

Использование вытяжки во время приготовления пищи в жилых помещениях имеет важное значение для поддержания хорошего качества воздуха в помещении. Однако широкое использование повлияет на спрос на энергию в жилом фонде США. В этом документе описывается исследование моделирования для определения энергии объекта, источника энергии и потребительских затрат на всестороннее использование вытяжек.

Чтобы оценить энергетическое воздействие на все 113 миллионов домов в США, мы экстраполировали результаты моделирования репрезентативной взвешенной выборки из 50 000 виртуальных домов, разработанной в 2009 году.База данных обследования бытового энергопотребления. К каждому дому была применена имитационная модель, основанная на физике, которая учитывала энергию вентилятора, энергию для кондиционирования дополнительного поступающего воздуха и влияние на отопление и охлаждение дома из-за отвода тепла от приготовления пищи. Для вытяжек, работающих на уровне, обычном для вытяжек, используемых в настоящее время в домах США, потребуется 19–33 ТВтч [69–120 ПДж] энергии объекта, 31–53 ТВтч [110–190 ПДж] энергии источника; и будет стоить потребителям 1,2–2,1 миллиарда долларов (2010 долларов США) в год в жилищном фонде США. Средняя семья тратит менее 15 долларов в год. Уменьшение требуемого расхода воздуха, т.е. с конструкциями, способствующими лучшему улавливанию загрязняющих веществ, в среднем имеет больший потенциал энергосбережения, чем повышение эффективности вентилятора.

Авторов:
Лог, Дженнифер М.; Певица, Бретт
Дата публикации:
Исследовательская организация:
Национальная лаборатория Лоуренса Беркли. (LBNL), Беркли, Калифорния (США)
Организация-спонсор:
Отдел экологических энергетических технологий
Идентификатор ОСТИ:
1163746
Номер(а) отчета:
ЛБНЛ-6683Е
Номер контракта DOE:  
ДЕ-АС02-05Ч21231
Тип ресурса:
Технический отчет
Страна публикации:
США
Язык:
Английский
Тема:
32 ЭНЕРГОСБЕРЕЖЕНИЕ, ПОТРЕБЛЕНИЕ И ИСПОЛЬЗОВАНИЕ; 99 ОБЩИЕ И РАЗНЫЕ

Форматы цитирования

  • MLA
  • АПА
  • Чикаго
  • БибТекс

Лог, Дженнифер М. , и Сингер, Бретт. Энергетическое воздействие эффективного использования вытяжных шкафов для всех жилых помещений США для приготовления пищи . США: Н. П., 2014. Веб. дои: 10.2172/1163746.

Копировать в буфер обмена

Лог, Дженнифер М. и Сингер, Бретт. Энергетическое воздействие эффективного использования вытяжных вытяжек для всех жилых помещений США для приготовления пищи . Соединенные Штаты. https://doi.org/10.2172/1163746

Копировать в буфер обмена

Лог, Дженнифер М., и Сингер, Бретт. 2014. «Энергетическое воздействие эффективного использования вытяжки для приготовления пищи во всех жилых помещениях США». Соединенные Штаты. https://doi.org/10.2172/1163746. https://www.osti.gov/servlets/purl/1163746.

Копировать в буфер обмена

@статья{osti_1163746,
title = {Энергетическое воздействие эффективного использования вытяжных вытяжек для всех жилых домов в США},
автор = {Лог, Дженнифер М. и Сингер, Бретт},
abstractNote = {Использование вытяжки во время приготовления пищи в жилых помещениях необходимо для поддержания хорошего качества воздуха в помещении. Однако широкое использование повлияет на спрос на энергию в жилом фонде США. В этом документе описывается исследование моделирования для определения энергии объекта, источника энергии и потребительских затрат на всестороннее использование вытяжек. Чтобы оценить энергетическое воздействие на все 113 миллионов домов в США, мы экстраполировали результаты моделирования репрезентативной взвешенной выборки из 50 000 виртуальных домов, разработанной в 2009 году.База данных обследования бытового энергопотребления. К каждому дому была применена имитационная модель, основанная на физике, которая учитывала энергию вентилятора, энергию для кондиционирования дополнительного поступающего воздуха и влияние на отопление и охлаждение дома из-за отвода тепла от приготовления пищи. Для вытяжек, работающих на уровне, обычном для вытяжек, используемых в настоящее время в домах США, потребуется 19–33 ТВтч [69–120 ПДж] энергии объекта, 31–53 ТВтч [110–190 ПДж] энергии источника; и будет стоить потребителям 1,2–2,1 миллиарда долларов (2010 долларов США) в год в жилищном фонде США.

Средняя семья тратит менее 15 долларов в год. Уменьшение требуемого расхода воздуха, т.е. с конструкциями, способствующими лучшему улавливанию загрязняющих веществ, в среднем имеет больший потенциал энергосбережения, чем повышение эффективности вентилятора.},
дои = {10,2172/1163746},
URL = {https://www.osti.gov/biblio/1163746}, журнал = {},
номер = ,
объем = ,
место = {США},
год = {2014},
месяц = ​​{6}
}

Копировать в буфер обмена


Посмотреть технический отчет (2,01 МБ)

https://doi.org/10.2172/1163746


Экспорт метаданных

Сохранить в моей библиотеке

Вы должны войти в систему или создать учетную запись, чтобы сохранять документы в своей библиотеке.

Аналогичных записей в сборниках OSTI.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *